import gradio as gr import time from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline from flores200_codes import flores_codes def load_models(): # build model and tokenizer model_name_dict = { # "nllb-distilled-600M": "facebook/nllb-200-distilled-600M", "nllb-distilled-1.3B": "facebook/nllb-200-distilled-1.3B", # "nllb-1.3B": "facebook/nllb-200-1.3B", # "nllb-3.3B": "facebook/nllb-200-3.3B", } model_dict = {} for call_name, real_name in model_name_dict.items(): print("\tLoading model: %s" % call_name) model = AutoModelForSeq2SeqLM.from_pretrained(real_name) tokenizer = AutoTokenizer.from_pretrained(real_name) model_dict[call_name + "_model"] = model model_dict[call_name + "_tokenizer"] = tokenizer return model_dict def translation(model_name, source, target, text): start_time = time.time() source = flores_codes[source] target = flores_codes[target] model = model_dict[model_name + "_model"] tokenizer = model_dict[model_name + "_tokenizer"] translator = pipeline( "translation", model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target, ) output = translator(text, max_length=400) end_time = time.time() full_output = output output = output[0]["translation_text"] result = { "inference_time": end_time - start_time, "source": source, "target": target, "result": output, "full_output": full_output, } return result if __name__ == "__main__": print("\tinit models") global model_dict model_dict = load_models() # define gradio demo lang_codes = list(flores_codes.keys()) inputs = [ gr.inputs.Radio( [ # "nllb-distilled-600M", "nllb-distilled-1.3B", # "nllb-1.3B", # "nllb-3.3B" ], label="NLLB Model", default="nllb-distilled-600M", ), gr.inputs.Dropdown(lang_codes, default="Najdi Arabic", label="Source"), gr.inputs.Dropdown(lang_codes, default="English", label="Target"), gr.inputs.Textbox(lines=5, label="Input text"), ] outputs = gr.outputs.JSON() title = "NLLB (No Language Left Behind) demo" demo_status = "Demo is running on CPU" description = f"Using NLLB model, details: https://github.com/facebookresearch/fairseq/tree/nllb. {demo_status}" examples = [["nllb-distilled-1.3B", "Najdi Arabic", "English", "جلست اطفال"]] gr.Interface( translation, inputs, outputs, title=title, description=description, examples=examples, examples_per_page=50, ).launch()