import streamlit as st import transformers import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("ikoghoemmanuell/finetuned_sentiment_modell") model = AutoModelForSequenceClassification.from_pretrained("ikoghoemmanuell/finetuned_sentiment_modell") # Define the function for sentiment analysis @st.cache_resource def predict_sentiment(text): # Load the pipeline. pipeline = transformers.pipeline("sentiment-analysis") # Predict the sentiment. prediction = pipeline(text) sentiment = prediction[0]["label"] score = prediction[0]["score"] return sentiment, score # Setting the page configurations st.set_page_config( page_title="Sentiment Analysis App", page_icon=":smile:", layout="wide", initial_sidebar_state="auto", ) # Add description and title st.write(""" # How Positive or Negative is your Text? Enter some text and we'll tell you if it has a positive, negative, or neutral sentiment! """) # Add image image = st.image("https://i0.wp.com/thedatascientist.com/wp-content/uploads/2018/10/sentiment-analysis.png", width=400) # Get user input text = st.text_input("Enter some text here:") # Define the CSS style for the app st.markdown( """ """, unsafe_allow_html=True ) # Show sentiment output if text: sentiment, score = predict_sentiment(text) if sentiment == "Positive": st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") elif sentiment == "Negative": st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") else: st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")