import torch
import gradio as gr
import pytube as pt
from transformers import pipeline
from huggingface_hub import model_info
#from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
MODEL_NAME = "ihanif/wav2vec2-xls-r-300m-pashto"
lang = "ps"
#load pre-trained model and tokenizer
#processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
#model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
#chunk_length_s=30,
device=device,
)
#pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
def transcribe(microphone, file_upload):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
text = pipe(file)["text"]
#transcription = wav2vec_model(audio)["text"]
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'