#!/usr/bin/env python """ Gradio Web Interface for Math Validator """ import gradio as gr import pandas as pd import os import subprocess import sys import json from datetime import datetime import threading import queue import time from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() class ValidatorGUI: def __init__(self): self.process = None self.output_queue = queue.Queue() self.is_running = False self.total_questions = 0 self.math_questions = 0 # Progress tracking self.questions_processed = 0 self.correct_answers = 0 self.incorrect_answers = 0 self.timeouts = 0 self.errors = 0 # Model options self.openai_models = [ "o3-mini", "gpt-4o", "gpt-5", "gpt-5-mini", "gpt-5-nano", "gpt-4-turbo" ] self.openrouter_models = [ # Anthropic Claude 4 Series (NEW) "anthropic/claude-4-opus", "anthropic/claude-4-sonnet", # Anthropic Claude 3.5 Series "anthropic/claude-3.5-sonnet", "anthropic/claude-3-5-sonnet-20241022", "anthropic/claude-3-opus", "anthropic/claude-3-haiku", # xAI Grok Series (including Grok 4) "x-ai/grok-4", "x-ai/grok-2", "x-ai/grok-2-1212", # DeepSeek Reasoning Models (NEW) "deepseek/deepseek-r1", "deepseek/deepseek-v3", "deepseek/deepseek-chat", # Google Gemini "google/gemini-2.0-pro", "google/gemini-2.0-flash", "google/gemini-pro-1.5", "google/gemini-flash-1.5", # Baidu ERNIE (NEW) "baidu/ernie-4.0-turbo-8k", "baidu/ernie-bot-4", # Meta Llama "meta-llama/llama-3.2-405b", "meta-llama/llama-3.1-405b-instruct", # Mistral "mistralai/mistral-large", "mistralai/mixtral-8x22b-instruct" ] self.all_models = self.openai_models + self.openrouter_models def get_excel_files(self): """Get list of Excel files in current directory""" files = [f for f in os.listdir('.') if f.endswith('.xlsx') and not f.endswith('_validated.xlsx')] return files def analyze_file(self, file_path): """Analyze Excel file and return summary and question count""" if not file_path: return "No file selected", 0, 0 try: df = pd.read_excel(file_path, sheet_name='Data') # Store total questions self.total_questions = len(df) # Count math questions if 'raw_subject' in df.columns: math_filter = df['raw_subject'].str.lower().str.contains( 'math|statistic|calculus|algebra|geometry|trigonometry', na=False, regex=True ) self.math_questions = math_filter.sum() else: self.math_questions = len(df) # Check for images image_count = 0 if 'file_url' in df.columns: image_count = df['file_url'].notna().sum() summary = f"""### File Analysis **File:** {os.path.basename(file_path)} **Total rows:** {self.total_questions} **Math questions:** {self.math_questions} **Questions with images:** {image_count} **Columns found:** {', '.join(df.columns[:10])}{'...' if len(df.columns) > 10 else ''} **Estimated processing time:** - Serial: ~{self.math_questions * 30 // 60} minutes - Parallel (4 processes): ~{self.math_questions * 30 // (60 * 4)} minutes """ return summary, self.total_questions, self.math_questions except Exception as e: return f"Error analyzing file: {str(e)}", 0, 0 def validate_config(self, file_path, solver_model, recon_model, num_processes, batch_size): """Validate configuration before running""" errors = [] if not file_path or not os.path.exists(file_path): errors.append("Please select a valid Excel file") if not solver_model: errors.append("Please select a solver model") if not recon_model: errors.append("Please select a reconciliation model") # Check API keys needs_openai = solver_model in self.openai_models or recon_model in self.openai_models needs_openrouter = solver_model in self.openrouter_models or recon_model in self.openrouter_models if needs_openai and not os.getenv('OPENAI_API_KEY'): errors.append("OPENAI_API_KEY not found in environment") if needs_openrouter and not os.getenv('OPENROUTER_API_KEY'): errors.append("OPENROUTER_API_KEY not found in environment") return errors def generate_output_filename(self, file_path, start_q, end_q): """Generate output filename with timestamp and range""" base_name = os.path.basename(file_path).replace('.xlsx', '') timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") if start_q is not None and end_q is not None and (start_q > 0 or end_q < self.math_questions): # Add range to filename range_str = f"_q{start_q+1}_q{end_q}" else: range_str = "_full" return f"{base_name}_validated_{timestamp}{range_str}.xlsx" def parse_progress_line(self, line): """Parse output line for progress information""" # Parse based on the new [TAG] format line_lower = line.lower() if "[ok] got answer" in line_lower and "chars" in line_lower: self.questions_processed += 1 elif "[fail] failed to get answer" in line_lower: self.errors += 1 self.questions_processed += 1 # Still count as processed elif "[match]" in line_lower: self.correct_answers += 1 elif "[mismatch]" in line_lower: self.incorrect_answers += 1 elif "[timeout]" in line_lower: self.timeouts += 1 elif "[error]" in line_lower: if "failed after" in line_lower: self.errors += 1 elif "[warning]" in line_lower: # Just a warning, not an error pass elif "question" in line_lower and "getting answer from" in line_lower: # This indicates a question is starting to be processed pass # Also parse parallel processing output elif "starting process for questions" in line_lower: # Parallel process starting pass elif "completed range" in line_lower: # Parallel process completed a range import re # Try to extract question count from "Completed range X-Y" match = re.search(r'range (\d+)-(\d+)', line_lower) if match: start, end = int(match.group(1)), int(match.group(2)) # This is approximate since we don't know exact results self.questions_processed = max(self.questions_processed, end) def get_progress_stats(self): """Get formatted progress statistics""" if self.questions_processed == 0: return "Waiting for processing to start..." accuracy = (self.correct_answers / self.questions_processed * 100) if self.questions_processed > 0 else 0 return f"""**Progress Stats:** - Processed: {self.questions_processed} - Correct: {self.correct_answers} ({accuracy:.1f}%) - Incorrect: {self.incorrect_answers} - Timeouts: {self.timeouts} - Errors: {self.errors} """ def run_validation(self, file_path, solver_model, recon_model, image_mode, num_processes, batch_size, start_q, end_q, compile_latex, progress=gr.Progress()): """Run the validation process""" # Reset progress counters self.questions_processed = 0 self.correct_answers = 0 self.incorrect_answers = 0 self.timeouts = 0 self.errors = 0 # Validate configuration errors = self.validate_config(file_path, solver_model, recon_model, num_processes, batch_size) if errors: yield f"### Configuration Errors\n" + "\n".join(f"- {e}" for e in errors), None, "" return self.is_running = True output_log = [] # Generate output filename output_file = self.generate_output_filename(file_path, start_q, end_q) output_path = os.path.join(os.path.dirname(file_path), output_file) try: # Prepare command base_cmd = [ sys.executable, "universal_validator.py", file_path, "--model", solver_model, "--reconciliation-model", recon_model, "--images", image_mode, "--batch-size", str(batch_size), "--output", output_path ] # Add range parameters if specified if start_q is not None and start_q >= 0: base_cmd.extend(["--start", str(start_q)]) if end_q is not None and end_q > 0: base_cmd.extend(["--end", str(end_q)]) # Add LaTeX compilation flag if requested if compile_latex: base_cmd.append("--compile-latex") # Use parallel processing for larger ranges if num_processes > 1 and (end_q - start_q) > 20: cmd = [ sys.executable, "run_parallel.py", file_path, "--num-processes", str(num_processes), "--solver", solver_model, "--reconciler", recon_model, "--images", image_mode, "--batch-size", str(batch_size), "--output", output_path, "--start-range", str(start_q), "--end-range", str(end_q) ] if compile_latex: cmd.append("--compile-latex") print(f"[GUI] Using parallel processing with {num_processes} processes") else: # Use single process for small ranges cmd = base_cmd if num_processes > 1 and (end_q - start_q) <= 20: print(f"[GUI] Range too small for parallel processing, using single process") # Start process progress(0, desc="Starting validation...") output_log.append(f"Running: {' '.join(cmd)}\n") output_log.append(f"Output file: {output_path}\n") output_log.append(f"Question range: {start_q+1} to {end_q}\n\n") print(f"[GUI] Starting subprocess: {' '.join(cmd)}") try: self.process = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True, bufsize=1, universal_newlines=True, encoding='utf-8', errors='replace' ) print(f"[GUI] Process started with PID: {self.process.pid}") except Exception as e: error_msg = f"Failed to start validator: {str(e)}" print(f"[GUI Error] {error_msg}") yield error_msg, None, "" return # Read output lines_processed = 0 last_update_time = time.time() while True: line = self.process.stdout.readline() if not line: # Check if process is still running if self.process.poll() is not None: break time.sleep(0.1) continue output_log.append(line) self.parse_progress_line(line) # Debug: Print every line to see what's happening print(f"[GUI Debug] {line.strip()}") # Update progress based on output if "processing batch" in line.lower() or "question" in line.lower(): lines_processed += 1 if self.math_questions > 0 and self.questions_processed > 0: actual_progress = min(self.questions_processed / (end_q - start_q), 1.0) progress(actual_progress, desc=f"Processing question {self.questions_processed}/{end_q - start_q}") # Yield intermediate results with stats every 2 seconds or every 5 lines current_time = time.time() if lines_processed % 5 == 0 or (current_time - last_update_time) > 2: stats = self.get_progress_stats() output_text = stats + "\n\n" + "="*60 + "\n" + "".join(output_log[-50:]) yield output_text, None, stats last_update_time = current_time self.process.wait() # Get final results final_stats = self.get_progress_stats() output_text = f"### Validation Complete\n\n{final_stats}\n\n" + "="*60 + "\n\nFull Log:\n" + "".join(output_log[-200:]) # Check if output file exists if os.path.exists(output_path): yield output_text, output_path, final_stats else: # Try original naming convention as fallback fallback_path = file_path.replace('.xlsx', '_validated.xlsx') if os.path.exists(fallback_path): yield output_text, fallback_path, final_stats else: yield output_text, None, final_stats except Exception as e: stats = self.get_progress_stats() yield f"Error: {str(e)}\n\n{stats}\n\n{''.join(output_log)}", None, stats finally: self.is_running = False self.process = None def stop_validation(self): """Stop the running validation""" if self.process: self.process.terminate() time.sleep(1) if self.process.poll() is None: self.process.kill() return "Validation stopped" return "No validation running" def create_interface(self): """Create the Gradio interface""" with gr.Blocks(title="Math Validator", theme=gr.themes.Soft()) as interface: gr.Markdown("# Math Question Validator") gr.Markdown("Web interface for validating mathematical questions and answers") with gr.Tab("Validation"): with gr.Row(): with gr.Column(scale=1): # File selection file_dropdown = gr.Dropdown( choices=self.get_excel_files(), label="Select Excel File", value=self.get_excel_files()[0] if self.get_excel_files() else None ) refresh_btn = gr.Button("🔄 Refresh Files", size="sm") file_info = gr.Markdown("Select a file to see analysis") # Question range selection (dynamically updated) gr.Markdown("### Question Range") with gr.Row(): start_question = gr.Number( label="Start Question", value=1, minimum=1, step=1, info="First question to process" ) end_question = gr.Number( label="End Question", value=100, minimum=1, step=1, info="Last question to process" ) use_all_questions = gr.Checkbox( label="Process all questions", value=True, info="Uncheck to specify custom range" ) with gr.Column(scale=2): with gr.Row(): # Model selection solver_dropdown = gr.Dropdown( choices=["o3-mini (recommended)"] + self.all_models, value="o3-mini (recommended)", label="Solver Model", info="Model for answering questions" ) recon_dropdown = gr.Dropdown( choices=["gpt-4o (recommended)"] + self.all_models, value="gpt-4o (recommended)", label="Reconciliation Model", info="Model for comparing answers" ) with gr.Row(): image_mode = gr.Radio( choices=["when_needed", "always", "never"], value="when_needed", label="Image Handling", info="When to include images with questions" ) parallel_slider = gr.Slider( minimum=1, maximum=8, value=1, step=1, label="Parallel Processes", info="Number of concurrent processes (1 = serial)" ) batch_slider = gr.Slider( minimum=1, maximum=20, value=5, step=1, label="Batch Size", info="Questions per batch" ) # LaTeX compilation option compile_latex = gr.Checkbox( label="Compile LaTeX reconciliation documents to PDF", value=False, info="Requires pdflatex installed (slower but produces PDFs)" ) with gr.Row(): run_btn = gr.Button("â–ļī¸ Start Validation", variant="primary", size="lg") stop_btn = gr.Button("âšī¸ Stop", variant="stop", size="lg") # Output section with progress stats progress_stats = gr.Markdown("**Progress:** Waiting to start...") output_text = gr.Textbox( label="Validation Output", lines=20, max_lines=30, value="Click 'Start Validation' to begin..." ) output_file = gr.File( label="Download Results", visible=False ) # Event handlers def update_file_info(file_path): if file_path: full_path = os.path.join(os.getcwd(), file_path) summary, total, math_q = self.analyze_file(full_path) # Update end question to match file return summary, math_q return "No file selected", 100 def refresh_files(): files = self.get_excel_files() return gr.update(choices=files, value=files[0] if files else None) def clean_model_name(model): # Remove "(recommended)" suffix if present if "(recommended)" in model: return model.split(" (")[0] return model def toggle_range_inputs(use_all): # Enable/disable range inputs based on checkbox return gr.update(interactive=not use_all), gr.update(interactive=not use_all) def run_with_clean_models(file_path, solver, recon, images, parallel, batch, use_all, start_q, end_q, compile_tex): solver_clean = clean_model_name(solver) recon_clean = clean_model_name(recon) if file_path: full_path = os.path.join(os.getcwd(), file_path) # Adjust question range (convert to 0-indexed) if use_all: actual_start = 0 actual_end = self.math_questions else: actual_start = max(0, int(start_q) - 1) # Convert to 0-indexed actual_end = min(self.math_questions, int(end_q)) # Run validation with progress updates for result in self.run_validation( full_path, solver_clean, recon_clean, images, parallel, batch, actual_start, actual_end, compile_tex ): if len(result) == 3: result_text, result_file, stats = result if result_file: yield result_text, gr.update(value=result_file, visible=True), stats else: yield result_text, gr.update(visible=False), stats else: yield result[0], gr.update(visible=False), result[1] if len(result) > 1 else "" else: yield "No file selected", gr.update(visible=False), "" file_dropdown.change(update_file_info, inputs=[file_dropdown], outputs=[file_info, end_question]) refresh_btn.click(refresh_files, outputs=[file_dropdown]) # Toggle range inputs when checkbox changes use_all_questions.change(toggle_range_inputs, inputs=[use_all_questions], outputs=[start_question, end_question]) run_btn.click( run_with_clean_models, inputs=[file_dropdown, solver_dropdown, recon_dropdown, image_mode, parallel_slider, batch_slider, use_all_questions, start_question, end_question, compile_latex], outputs=[output_text, output_file, progress_stats] ) stop_btn.click(self.stop_validation, outputs=[output_text]) with gr.Tab("Configuration"): gr.Markdown(""" ### API Configuration Make sure you have the required API keys set as environment variables: - **OPENAI_API_KEY**: Required for OpenAI models (o3-mini, GPT-5, GPT-4o) - **OPENROUTER_API_KEY**: Required for Claude, Grok, Gemini, and other models ### Model Recommendations **For best results:** - Solver: o3-mini (best accuracy) - Reconciliation: gpt-4o (fast and reliable) **For speed:** - Use 4-6 parallel processes - Batch size of 5-10 **For GPT-5 testing:** - Use gpt-5-mini (faster than gpt-5) - Use gpt-4o for reconciliation (GPT-5 has timeout issues) """) # Check current configuration config_status = [] if os.getenv('OPENAI_API_KEY'): config_status.append("✅ OPENAI_API_KEY is set") else: config_status.append("❌ OPENAI_API_KEY is not set") if os.getenv('OPENROUTER_API_KEY'): config_status.append("✅ OPENROUTER_API_KEY is set") else: config_status.append("❌ OPENROUTER_API_KEY is not set") gr.Markdown("### Current Status\n" + "\n".join(config_status)) with gr.Tab("Results Analysis"): gr.Markdown(""" ### How to Analyze Results After validation completes: 1. **Download the validated Excel file** - Contains all results 2. **Check the latex_documents folder** - Contains reconciliation documents 3. **Run analysis scripts:** - `python analyze_reconciliations.py` - Analyze which answers were vindicated - `python summarize_results.py` - Get overall statistics ### Understanding Results - **answer_match = Yes**: Model answer matches reference - **answer_match = No**: Mismatch (see LaTeX reconciliation) - **latex_file**: Path to detailed reconciliation document - **model_answer_file**: Path to model's complete response """) return interface def main(): gui = ValidatorGUI() interface = gui.create_interface() interface.launch( share=False, server_name="127.0.0.1", server_port=7860, inbrowser=True ) if __name__ == "__main__": main()