import os import torch from torch import cuda, bfloat16 from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList from langchain.llms import HuggingFacePipeline from langchain.vectorstores import FAISS from langchain.chains import ConversationalRetrievalChain import gradio as gr from langchain.embeddings import HuggingFaceEmbeddings # Load the Hugging Face token from environment HF_TOKEN = os.environ.get("HF_TOKEN", None) # Define stopping criteria class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: for stop_ids in stop_token_ids: if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all(): return True return False # Load the LLaMA model and tokenizer # model_id = 'meta-llama/Meta-Llama-3-8B-Instruct' # model_id= "meta-llama/Llama-2-7b-chat-hf" model_id="mistralai/Mistral-7B-Instruct-v0.2" device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' # Set quantization configuration bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type='nf4', bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config) # Define stopping criteria stop_list = ['\nHuman:', '\n```\n'] stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list] stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids] stopping_criteria = StoppingCriteriaList([StopOnTokens()]) # Create text generation pipeline generate_text = pipeline( model=model, tokenizer=tokenizer, return_full_text=True, task='text-generation', stopping_criteria=stopping_criteria, temperature=0.1, max_new_tokens=512, repetition_penalty=1.1 ) llm = HuggingFacePipeline(pipeline=generate_text) # Load the stored FAISS index try: vectorstore = FAISS.load_local('faiss_index', HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"})) print("Loaded embedding successfully") except ImportError as e: print("FAISS could not be imported. Make sure FAISS is installed correctly.") raise e # Set up the Conversational Retrieval Chain chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True) chat_history = [] def format_prompt(query): prompt = f""" You are a knowledgeable assistant with access to a comprehensive database. I need you to answer my question and provide related information in a specific format. Here's what I need: 1. A brief, general response to my question based on related answers retrieved. 2. A JSON-formatted output containing: - "question": The original question. - "answer": The detailed answer. - "related_questions": A list of related questions and their answers, each as a dictionary with the keys. Consider all source documents: - "question": The related question. - "answer": The related answer. Here's my question: {query} Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point. Example 1: ''' { "question": "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM", "answer": "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from \"A15_0\" to \"IPU1_0\".", "related_questions": [ { "question": "Can you provide MLBP documentation on TDA2?", "answer": "MLB is documented for DRA devices in the TRM book, chapter 24.12." }, { "question": "Hi, could you share me the TDA2x documents about Security(SPRUHS7) and Cryptographic(SPRUHS8) addendums?", "answer": "Most of TDA2 documents are on ti.com under the product folder." }, { "question": "Is any one can provide us a way to access CDDS for nessary docs?", "answer": "Which document are you looking for?" }, { "question": "What can you tell me about the TDA2 and TDA3 processors? Can they / do they run Linux?", "answer": "We have moved your post to the appropriate forum." } ] } Final Answer:To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from "A15_0" to "IPU1_0". ''' """ return prompt def qa_infer(query): formatted_prompt = format_prompt(query) result = chain({"question": formatted_prompt, "chat_history": chat_history}) for doc in result['source_documents']: print("-"*50) print("Retrieved Document:", doc.page_content) print("#"*100) print(result['answer']) return result['answer'] EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM", "Can BQ25896 support I2C interface?", "Does TDA2 vout support bt656 8-bit mode?"] demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text") demo.launch() # import os # import torch # from torch import cuda, bfloat16 # from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList # from langchain.llms import HuggingFacePipeline # from langchain.vectorstores import FAISS # from langchain.chains import ConversationalRetrievalChain # import gradio as gr # from langchain.embeddings import HuggingFaceEmbeddings # # Load the Hugging Face token from environment # HF_TOKEN = os.environ.get("HF_TOKEN", None) # # Define stopping criteria # class StopOnTokens(StoppingCriteria): # def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: # for stop_ids in stop_token_ids: # if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all(): # return True # return False # # Load the LLaMA model and tokenizer # model_id = 'meta-llama/Meta-Llama-3-8B-Instruct' # device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' # # Set quantization configuration # bnb_config = BitsAndBytesConfig( # load_in_4bit=True, # bnb_4bit_quant_type='nf4', # bnb_4bit_use_double_quant=True, # bnb_4bit_compute_dtype=bfloat16 # ) # tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) # model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config) # # Define stopping criteria # stop_list = ['\nHuman:', '\n```\n'] # stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list] # stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids] # stopping_criteria = StoppingCriteriaList([StopOnTokens()]) # # Create text generation pipeline # generate_text = pipeline( # model=model, # tokenizer=tokenizer, # return_full_text=True, # task='text-generation', # stopping_criteria=stopping_criteria, # temperature=0.1, # max_new_tokens=512, # repetition_penalty=1.1 # ) # llm = HuggingFacePipeline(pipeline=generate_text) # # Load the stored FAISS index # try: # embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"}) # vectorstore = FAISS.load_local('faiss_index', embeddings) # print("Loaded embedding successfully") # except ImportError as e: # print("FAISS could not be imported. Make sure FAISS is installed correctly.") # raise e # # Set up the Conversational Retrieval Chain # chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True) # chat_history = [] # def format_prompt(query): # prompt = f""" # You are a knowledgeable assistant with access to a comprehensive database. # I need you to answer my question and provide related information in a specific format. # Here's what I need: # 1. A brief, general response to my question based on related answers retrieved. # 2. A JSON-formatted output containing: # - "question": The original question. # - "answer": The detailed answer. # - "related_questions": A list of related questions and their answers, each as a dictionary with the keys: # - "question": The related question. # - "answer": The related answer. # Here's my question: # {query} # Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point. # """ # return prompt # def qa_infer(query): # formatted_prompt = format_prompt(query) # result = chain({"question": formatted_prompt, "chat_history": chat_history}) # return result['answer'] # EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM", # "Can BQ25896 support I2C interface?", # "Does TDA2 vout support bt656 8-bit mode?"] # demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text") # demo.launch()