import gradio as gr import os import whisper import cv2 import json import tempfile import torch import transformers import re import time from torch import cuda, bfloat16 from moviepy.editor import VideoFileClip from image_caption import Caption from pathlib import Path from langchain import PromptTemplate from langchain import LLMChain from langchain.llms import HuggingFacePipeline from difflib import SequenceMatcher import argparse import shutil from PIL import Image import google.generativeai as genai from huggingface_hub import InferenceClient class VideoClassifier: def __init__(self, no_of_frames, mode='interface',model='gemini'): self.no_of_frames = no_of_frames self.mode = mode self.model_name = model.strip().lower() print(self.model_name) os.environ["TOKENIZERS_PARALLELISM"] = "false" if self.model_name=='mistral': print("Setting up Mistral model for Class Selection") self.setup_mistral_model() else : print("Setting up Gemini model for Class Selection") self.setup_gemini_model() self.setup_paths() self.hf_key = os.environ.get("HF_KEY", None) def setup_paths(self): self.path = './results' if os.path.exists(self.path): shutil.rmtree(self.path) os.mkdir(self.path) def setup_gemini_model(self): self.genai = genai self.genai.configure(api_key="AIzaSyAFG94rVbm9eWepO5uPGsMha8XJ-sHbMdA") self.genai_model = genai.GenerativeModel('gemini-pro') self.whisper_model = whisper.load_model("base") self.img_cap = Caption() def setup_mistral_space_model(self): if not self.hf_key: raise ValueError("Hugging Face API key is not set or invalid.") self.client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") self.whisper_model = whisper.load_model("base") self.img_cap = Caption() def setup_mistral_model(self): self.model_id = "mistralai/Mistral-7B-Instruct-v0.2" self.device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' # self.device_name = torch.cuda.get_device_name() # print(f"Using device: {self.device} ({self.device_name})") bnb_config = transformers.BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type='nf4', bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=bfloat16, ) hf_auth = self.hf_key print(hf_auth) model_config = transformers.AutoConfig.from_pretrained( self.model_id, use_auth_token=hf_auth ) self.model = transformers.AutoModelForCausalLM.from_pretrained( self.model_id, trust_remote_code=True, config=model_config, quantization_config=bnb_config, use_auth_token=hf_auth ) self.model.eval() self.tokenizer = transformers.AutoTokenizer.from_pretrained( self.model_id, use_auth_token=hf_auth ) self.generate_text = transformers.pipeline( model=self.model, tokenizer=self.tokenizer, return_full_text=True, task='text-generation', temperature=0.01, max_new_tokens=32 ) self.whisper_model = whisper.load_model("base") self.img_cap = Caption() self.llm = HuggingFacePipeline(pipeline=self.generate_text) def audio_extraction(self,video_input): print(f"Processing video: {video_input} with {self.no_of_frames} frames.") mp4_file = video_input video_name = mp4_file.split("/")[-1] wav_file = "results/audiotrack.wav" video_clip = VideoFileClip(mp4_file) audioclip = video_clip.audio wav_file = audioclip.write_audiofile(wav_file) audioclip.close() video_clip.close() audiotrack = "results/audiotrack.wav" result = self.whisper_model.transcribe(audiotrack, fp16=False) transcript = result["text"] print("TRANSCRIPT",transcript) return transcript def generate_text(self, inputs, parameters=None): if parameters is None: parameters = { "temperature": 0.7, "max_new_tokens": 50, "top_p": 0.9, "repetition_penalty": 1.2 } return self.client(inputs, parameters) def classify_video(self,video_input): transcript=self.audio_extraction(video_input) video = cv2.VideoCapture(video_input) length = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) no_of_frame = int(self.no_of_frames) temp_div = length // no_of_frame currentframe = 50 caption_text = [] for i in range(no_of_frame): video.set(cv2.CAP_PROP_POS_FRAMES, currentframe) ret, frame = video.read() if ret: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) content = self.img_cap.predict_image_caption_gemini(image) print("content", content) caption_text.append(content) currentframe += temp_div - 1 else: break captions = ", ".join(caption_text) print("CAPTIONS", captions) video.release() cv2.destroyAllWindows() main_categories = Path("main_classes.txt").read_text() main_categories_list = ['Automotive', 'Books and Literature', 'Business and Finance', 'Careers', 'Education','Family and Relationships', 'Fine Art', 'Food & Drink', 'Healthy Living', 'Hobbies & Interests', 'Home & Garden','Medical Health', 'Movies', 'Music and Audio', 'News and Politics', 'Personal Finance', 'Pets', 'Pop Culture','Real Estate', 'Religion & Spirituality', 'Science', 'Shopping', 'Sports', 'Style & Fashion','Technology & Computing', 'Television', 'Travel', 'Video Gaming'] generate_kwargs = { "temperature": 0.9, "max_new_tokens": 256, "top_p": 0.95, "repetition_penalty": 1.0, "do_sample": True, "seed": 42, "return_full_text": False } template1 = '''Given below are the different type of main video classes {main_categories} You are a text classifier that catergorises the transcript and captions into one main class whose context match with one main class and only generate main class name no need of sub classe or explanation. Give more importance to Transcript while classifying . Transcript: {transcript} Captions: {captions} Return only the answer chosen from list and nothing else Main-class => ''' prompt1 = PromptTemplate(template=template1, input_variables=['main_categories', 'transcript', 'captions']) print("PROMPT 1",prompt1) # print(self.model) # print(f"Current model in use: {self.model}") if self.model_name=='mistral': try: chain1 = LLMChain(llm=self.llm, prompt=prompt1) main_class = chain1.predict(main_categories=main_categories, transcript=transcript, captions=captions) except: stream = self.client.text_generation(prompt1, **generate_kwargs, stream=True, details=True) output = "" for response in stream: output += response['token'].text print("Streaming output:", output) main_class = output.strip() print(main_class) print("#######################################################") pattern = r"Main-class =>\s*(.+)" match = re.search(pattern, main_class) if match: main_class = match.group(1).strip() else: main_class = None else: prompt_text = template1.format(main_categories=main_categories, transcript=transcript, captions=captions) response = self.genai_model.generate_content(contents=prompt_text) main_class = response.text print(main_class) print("#######################################################") print("MAIN CLASS: ",main_class) def category_class(class_name,categories_list): def similar(str1, str2): return SequenceMatcher(None, str1, str2).ratio() index_no = 0 sim = 0 for sub in categories_list: res = similar(class_name, sub) if res>sim: sim = res index_no = categories_list.index(sub) class_name = categories_list[index_no] return class_name if main_class not in main_categories_list: main_class = category_class(main_class,main_categories_list) print("POST PROCESSED MAIN CLASS : ",main_class) tier_1_index_no = main_categories_list.index(main_class) + 1 with open('categories_json.txt') as f: data = json.load(f) sub_categories_list = data[main_class] print("SUB CATEGORIES LIST",sub_categories_list) with open("sub_categories.txt", "w") as f: no = 1 # print(data[main_class]) for i in data[main_class]: f.write(str(no)+')'+str(i) + '\n') no = no+1 sub_categories = Path("sub_categories.txt").read_text() template2 = '''Given below are the sub classes of {main_class}. {sub_categories} You are a text classifier that catergorises the transcript and captions into one sub class whose context match with one sub class and only generate sub class name, Don't give explanation . Give more importance to Transcript while classifying . Transcript: {transcript} Captions: {captions} Return only the Sub-class answer chosen from list and nothing else Answer in the format: Main-class => {main_class} Sub-class => ''' prompt2 = PromptTemplate(template=template2, input_variables=['sub_categories', 'transcript', 'captions','main_class']) if self.model_name=='mistral': try: chain2 = LLMChain(llm=self.llm, prompt=prompt2) answer = chain2.predict(sub_categories=sub_categories, transcript=transcript, captions=captions,main_class=main_class) except: stream = self.client.text_generation(prompt2, **generate_kwargs, stream=True, details=True) output = "" for response in stream: output += response['token'].text print("Streaming output:", output) main_class = output.strip() print("Preprocess Answer",answer) pattern = r"Sub-class =>\s*(.+)" match = re.search(pattern, answer) if match: sub_class = match.group(1).strip() else: sub_class = None else: prompt_text2 = template1.format(main_categories=main_categories, transcript=transcript, captions=captions) response = self.genai_model.generate_content(contents=prompt_text2) sub_class = response.text print("Preprocess Answer",sub_class) print("SUB CLASS",sub_class) if sub_class not in sub_categories_list: sub_class = category_class(sub_class,sub_categories_list) print("POST PROCESSED SUB CLASS",sub_class) tier_2_index_no = sub_categories_list.index(sub_class) + 1 print("ANSWER:",sub_class) final_answer = (f"Tier 1 category : IAB{tier_1_index_no} : {main_class}\nTier 2 category : IAB{tier_1_index_no}-{tier_2_index_no} : {sub_class}") first_video = os.path.join(os.path.dirname(__file__), "American_football_heads_to_India_clip.mp4") second_video = os.path.join(os.path.dirname(__file__), "PersonalFinance_clip.mp4") # return final_answer, first_video, second_video return final_answer def save_model_choice(self,model_name): self.model_name = model_name if self.model_name=='mistral': print("Setting up Mistral model for Class Selection") self.setup_mistral_space_model() else : print("Setting up Gemini model for Class Selection") self.setup_gemini_model() return "Model selected: " + model_name def launch_interface(self): css_code = """ .gradio-container {background-color: #FFFFFF;color:#000000;background-size: 200px; background-image:url(https://gitlab.ignitarium.in/saran/logo/-/raw/aab7c77b4816b8a4bbdc5588eb57ce8b6c15c72d/ign_logo_white.png);background-repeat:no-repeat; position:relative; top:1px; left:5px; padding: 50px;text-align: right;background-position: right top;} """ css_code += """ :root { --body-background-fill: #FFFFFF; /* New value */ } """ css_code += """ :root { --body-background-fill: #000000; /* New value */ } """ interface_1 = gr.Interface( self.save_model_choice, inputs=gr.Dropdown(choices=['gemini', 'mistral'], label="Select Model", info="Default model: Gemini"), # outputs=interface_1_output, outputs="text" ) demo = gr.Interface(fn=self.classify_video, inputs="playablevideo",allow_flagging='never', examples=[ os.path.join(os.path.dirname(__file__), "American_football_heads_to_India_clip.mp4"),os.path.join(os.path.dirname(__file__), "PersonalFinance_clip.mp4"), os.path.join(os.path.dirname(__file__), "Motorcycle_clip.mp4"), os.path.join(os.path.dirname(__file__), "Spirituality_1_clip.mp4"), os.path.join(os.path.dirname(__file__), "Science_clip.mp4")], cache_examples=False, outputs=["text"], css=css_code, title="Interactive Advertising Bureau (IAB) compliant Video-Ad classification") # demo.launch(debug=True) gr.TabbedInterface([interface_1, demo], ["Model Selection", "Video Classification"]).launch(debug=True) def run_inference(self, video_path,model): result = self.classify_video(video_path) print(result) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Process some videos.') parser.add_argument("video_path", nargs='?', default=None, help="Path to the video file") parser.add_argument("-n", "--no_of_frames", type=int, default=3, help="Number of frames for image captioning") parser.add_argument("--mode", choices=['interface', 'inference'], default='interface', help="Mode of operation: interface or inference") parser.add_argument("--model", choices=['gemini','mistral'],default='gemini',help="Model for inference") args = parser.parse_args() vc = VideoClassifier(no_of_frames=args.no_of_frames, mode=args.mode , model=args.model) if args.mode == 'interface': vc.launch_interface() elif args.mode == 'inference' and args.video_path and args.model: vc.run_inference(args.video_path,args.model) else: print("Error: No video path/model provided for inference mode.") #Usage ### python main.py --mode interface ### python main.py videos/Spirituality_1_clip.mp4 -n 3 --mode inference --model gemini