# Import necessary libraries
import nest_asyncio
import gradio as gr
import requests
from huggingface_hub import InferenceClient
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.document_loaders import TextLoader
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.document_loaders import AsyncChromiumLoader
from langchain.document_loaders import TextLoader
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.document_loaders import AsyncChromiumLoader
# Apply nest_asyncio for asynchronous operations in environments like Jupyter notebooks
nest_asyncio.apply()
# Initialize the InferenceClient with the specified model
client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
# Set up a prompt template for the model (customize as needed)
prompt_template = PromptTemplate()
# Define the list of articles to index
articles = [
"https://www.fantasypros.com/2023/11/rival-fantasy-nfl-week-10/",
"https://www.fantasypros.com/2023/11/5-stats-to-know-before-setting-your-fantasy-lineup-week-10/",
"https://www.fantasypros.com/2023/11/nfl-week-10-sleeper-picks-player-predictions-2023/",
"https://www.fantasypros.com/2023/11/nfl-dfs-week-10-stacking-advice-picks-2023-fantasy-football/",
"https://www.fantasypros.com/2023/11/players-to-buy-low-sell-high-trade-advice-2023-fantasy-football/"
]
# Scrapes the blogs above
loader = AsyncChromiumLoader(articles)
docs = loader.load()
# Converts HTML to plain text
html2text = Html2TextTransformer()
docs_transformed = html2text.transform_documents(docs)
# Chunk text
text_splitter = CharacterTextSplitter(chunk_size=100,
chunk_overlap=10)
chunked_documents = text_splitter.split_documents(docs_transformed)
# Load chunked documents into the FAISS index
db = FAISS.from_documents(chunked_documents,
HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2'))
retriever = db.as_retriever()
# Create the RAG chain by combining the language model with the retriever
rag_chain = ({"context": retriever} | LLMChain)
# Define the generation function for the Gradio interface
def generate(
prompt, history, temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = ""
for user_prompt, bot_response in history:
formatted_prompt += f"[INST] {user_prompt} [/INST]"
formatted_prompt += f" {bot_response} "
formatted_prompt += f"[INST] {prompt} [/INST]"
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
# Define additional input components for the Gradio interface
additional_inputs = [
gr.Slider(
label="Temperature",
value=0.7,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1024,
step=64,
interactive=True,
info="The maximum number of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.95,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.1,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
# Define CSS for styling the Gradio interface
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
# Create the Gradio interface with the chat component
with gr.Blocks(css=css) as demo:
gr.HTML("