# Import necessary libraries import nest_asyncio import gradio as gr import requests from huggingface_hub import InferenceClient from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.document_loaders import TextLoader from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.document_loaders import AsyncChromiumLoader from langchain.document_loaders import TextLoader from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.document_loaders import AsyncChromiumLoader # Apply nest_asyncio for asynchronous operations in environments like Jupyter notebooks nest_asyncio.apply() # Initialize the InferenceClient with the specified model client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.1" ) # Set up a prompt template for the model (customize as needed) prompt_template = PromptTemplate() # Define the list of articles to index articles = [ "https://www.fantasypros.com/2023/11/rival-fantasy-nfl-week-10/", "https://www.fantasypros.com/2023/11/5-stats-to-know-before-setting-your-fantasy-lineup-week-10/", "https://www.fantasypros.com/2023/11/nfl-week-10-sleeper-picks-player-predictions-2023/", "https://www.fantasypros.com/2023/11/nfl-dfs-week-10-stacking-advice-picks-2023-fantasy-football/", "https://www.fantasypros.com/2023/11/players-to-buy-low-sell-high-trade-advice-2023-fantasy-football/" ] # Scrapes the blogs above loader = AsyncChromiumLoader(articles) docs = loader.load() # Converts HTML to plain text html2text = Html2TextTransformer() docs_transformed = html2text.transform_documents(docs) # Chunk text text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=10) chunked_documents = text_splitter.split_documents(docs_transformed) # Load chunked documents into the FAISS index db = FAISS.from_documents(chunked_documents, HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2')) retriever = db.as_retriever() # Create the RAG chain by combining the language model with the retriever rag_chain = ({"context": retriever} | LLMChain) # Define the generation function for the Gradio interface def generate( prompt, history, temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = "" for user_prompt, bot_response in history: formatted_prompt += f"[INST] {user_prompt} [/INST]" formatted_prompt += f" {bot_response} " formatted_prompt += f"[INST] {prompt} [/INST]" stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output # Define additional input components for the Gradio interface additional_inputs = [ gr.Slider( label="Temperature", value=0.7, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1024, step=64, interactive=True, info="The maximum number of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.1, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] # Define CSS for styling the Gradio interface css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ # Create the Gradio interface with the chat component with gr.Blocks(css=css) as demo: gr.HTML("

Mistral 7B Instruct

") gr.HTML("

In this demo, you can chat with Mistral-7B-Instruct model. 📜

") gr.HTML("

Learn more about the model here. 📚

") gr.ChatInterface( generate, additional_inputs=additional_inputs, examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]], ) # Launch the Gradio interface with debugging enabled demo.queue().launch(debug=True)