from gradio_utils import * def process_images_gradcam(show_gradcam, gradcam_count, gradcam_layer, gradcam_opacity): if show_gradcam: inv_normalize = transforms.Normalize( mean=[-1.9899, -1.9844, -1.7111], std=[4.0486, 4.1152, 3.8314]) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') misclassified_data = get_misclassified_data(modelfin, "cuda", test_loader) if gradcam_layer=="1": images = display_gradcam_output(misclassified_data, classes, inv_normalize, modelfin, target_layers= [modelfin.model.layer1[-1]], targets=None, number_of_samples=gradcam_count, transparency=gradcam_opacity) if gradcam_layer=="2": images = display_gradcam_output(misclassified_data, classes, inv_normalize, modelfin, target_layers= [modelfin.model.layer2[-1]], targets=None, number_of_samples=gradcam_count, transparency=gradcam_opacity) if gradcam_layer=="3": images = display_gradcam_output(misclassified_data, classes, inv_normalize, modelfin, target_layers= [modelfin.model.layer3[-1]], targets=None, number_of_samples=gradcam_count, transparency=gradcam_opacity) if gradcam_layer=="4": images = display_gradcam_output(misclassified_data, classes, inv_normalize, modelfin, target_layers= [modelfin.model.layer4[-1]], targets=None, number_of_samples=gradcam_count, transparency=gradcam_opacity) return images def process_images_misclass(show_misclassify, misclassify_count): if show_misclassify: misclassified_data = get_misclassified_data(modelfin, "cuda", test_loader) image = display_cifar_misclassified_data(misclassified_data, classes, inv_normalize, number_of_samples=misclassify_count) return image def predict_classes(upload_image, top_classes): transform = transforms.Compose([ transforms.Resize((32, 32)), # Resize to 32x32 pixels transforms.ToTensor(), # Convert image to tensor transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], # CIFAR-10 normalization std=[0.2023, 0.1994, 0.2010])]) # Load and transform an image image = upload_image image = transform(image) image = image.unsqueeze(0) device = next(modelfin.parameters()).device image = image.to(device) # Ensure the model is in evaluation mode modelfin.eval() # Disable gradient computation for inference with torch.no_grad(): output = modelfin(image) # Get the top 5 predictions and their indices probabilities = torch.nn.functional.softmax(output, dim=1) top_prob, top_catid = torch.topk(probabilities, top_classes) # CIFAR-10 classes classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] # Initialize an empty string to collect predictions predictions_str = "" # Collect top 5 predictions in the string with line breaks for i in range(top_prob.size(1)): predictions_str += f"{classes[top_catid[0][i]]}: {top_prob[0][i].item()*100:.2f}%\n" # Print or return the complete predictions string return predictions_str with gr.Blocks() as demo: with gr.Row(): with gr.Column(): show_gradcam = gr.Checkbox(label="Show GradCAM Images?") gradcam_count = gr.Number(label="How many GradCAM images?", value=1, precision=0) gradcam_layer = gr.Radio(choices=["1", "2", "3", "4"], label="Choose a layer", value=4) gradcam_opacity = gr.Slider(minimum=0, maximum=1, label="Opacity of overlay", value=0.5) # with gr.Column(): # show_misclassified = gr.Checkbox(label="Show Misclassified Images?") # misclassified_count = gr.Number(label="How many misclassified images?", value=1, precision=0) #uploaded_images = gr.File(label="Upload New Images", type="file", accept="image/*", multiple=True) #top_classes = gr.Number(label="How many top classes to show?", value=5, minimum=1, maximum=10, precision=0) submit_button = gr.Button("GradCam") outputs = gr.Image(label="Output") show_misclassify = gr.Checkbox(label="Show misclassified images?") misclassify_count=gr.Number(label="How many misclassified images?") submit_button_misclass = gr.Button("Misclassified") outputs_misclass = gr.Image(label="Output") upload_image = gr.Image(label="Upload your image", interactive = True, type='pil') top_classes = gr.Number(label="How many top classes would you like to see?", maximum=10) upload_btn = gr.Button("Classify your image") show_classes = gr.Textbox(label="Your top classes", interactive=False) submit_button_misclass.click( process_images_misclass, inputs=[show_misclassify, misclassify_count], outputs=outputs_misclass ) submit_button.click( process_images_gradcam, inputs=[show_gradcam, gradcam_count, gradcam_layer, gradcam_opacity], outputs=outputs ) upload_btn.click( predict_classes, inputs=[upload_image, top_classes], outputs=show_classes ) demo.launch()