Spaces:
Running
Running
Upload 5 files
Browse files- app.py +230 -0
- export_training_data_from_db.py +160 -0
- feedback.py +248 -0
- generator.py +1636 -0
- simulate_adapt.py +116 -0
app.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import re
|
| 3 |
+
from components.session_manager import initialize_session_state, clear_session, save_current_to_history, get_or_create_user_id
|
| 4 |
+
from components.ui_components import render_header, render_sidebar
|
| 5 |
+
from components.student_flow import render_student_flow
|
| 6 |
+
from components.tutor_flow import render_tutor_flow
|
| 7 |
+
from components.output_renderer import render_output_section
|
| 8 |
+
from components.feedback_handler import render_feedback_section
|
| 9 |
+
from components.export_handler import render_export_section
|
| 10 |
+
from components.history_page import render_history_page
|
| 11 |
+
|
| 12 |
+
import base64
|
| 13 |
+
|
| 14 |
+
# Find where the validation error is coming from
|
| 15 |
+
original_b64decode = base64.b64decode
|
| 16 |
+
|
| 17 |
+
def debug_b64decode(data, *args, **kwargs):
|
| 18 |
+
try:
|
| 19 |
+
return original_b64decode(data, *args, **kwargs)
|
| 20 |
+
except Exception as e:
|
| 21 |
+
print(f"🚨 BASE64 DECODE ERROR: {e}")
|
| 22 |
+
print(f"🚨 Data type: {type(data)}")
|
| 23 |
+
print(f"🚨 Data length: {len(data) if data else 0}")
|
| 24 |
+
if data and isinstance(data, str):
|
| 25 |
+
print(f"🚨 Data preview: {data[:100]}...")
|
| 26 |
+
import traceback
|
| 27 |
+
traceback.print_stack()
|
| 28 |
+
raise
|
| 29 |
+
|
| 30 |
+
base64.b64decode = debug_b64decode
|
| 31 |
+
|
| 32 |
+
# Streamlit App Configuration
|
| 33 |
+
st.set_page_config(page_title="TailorED", layout="wide")
|
| 34 |
+
|
| 35 |
+
def scroll_to_top():
|
| 36 |
+
"""Force scroll to top of page"""
|
| 37 |
+
st.components.v1.html("""
|
| 38 |
+
<script>
|
| 39 |
+
window.scrollTo(0, 0);
|
| 40 |
+
setTimeout(() => window.scrollTo(0, 0), 100);
|
| 41 |
+
setTimeout(() => window.scrollTo({top: 0, behavior: 'smooth'}), 200);
|
| 42 |
+
</script>
|
| 43 |
+
""", height=0)
|
| 44 |
+
|
| 45 |
+
def main():
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
from db.connection import init_db
|
| 49 |
+
init_db()
|
| 50 |
+
except Exception as e:
|
| 51 |
+
st.error(f"❌ Database initialization failed: {e}")
|
| 52 |
+
st.stop()
|
| 53 |
+
|
| 54 |
+
# Initialize session state
|
| 55 |
+
initialize_session_state()
|
| 56 |
+
|
| 57 |
+
# Ensure user ID is stored in session
|
| 58 |
+
if "user_id" not in st.session_state:
|
| 59 |
+
st.session_state.user_id = get_or_create_user_id()
|
| 60 |
+
|
| 61 |
+
# Create a scroll anchor at the top
|
| 62 |
+
scroll_anchor = st.empty()
|
| 63 |
+
|
| 64 |
+
# Render header with navigation
|
| 65 |
+
render_header_with_nav()
|
| 66 |
+
|
| 67 |
+
# Render sidebar
|
| 68 |
+
render_sidebar()
|
| 69 |
+
|
| 70 |
+
# Handle model regeneration if needed
|
| 71 |
+
if st.session_state.get("regenerate_with_new_model"):
|
| 72 |
+
handle_regeneration()
|
| 73 |
+
|
| 74 |
+
# Main application logic based on current page
|
| 75 |
+
handle_page_navigation()
|
| 76 |
+
|
| 77 |
+
# Session management
|
| 78 |
+
handle_session_management()
|
| 79 |
+
|
| 80 |
+
# Force scroll to top after content generation
|
| 81 |
+
if st.session_state.get("generated_output") and not st.session_state.get("scrolled_to_top", False):
|
| 82 |
+
scroll_to_top()
|
| 83 |
+
st.session_state.scrolled_to_top = True
|
| 84 |
+
|
| 85 |
+
def render_header_with_nav():
|
| 86 |
+
st.title("🧠 TailorED - AI-Powered Educational Content Generator")
|
| 87 |
+
|
| 88 |
+
col1, col2, col3, col4 = st.columns([2, 1, 1, 1])
|
| 89 |
+
|
| 90 |
+
with col1:
|
| 91 |
+
st.caption("Create, manage, and access your educational content")
|
| 92 |
+
|
| 93 |
+
with col2:
|
| 94 |
+
if st.button("🔄 New Content", use_container_width=True, key="new_content_btn"):
|
| 95 |
+
st.session_state.current_page = "generator"
|
| 96 |
+
clear_session()
|
| 97 |
+
st.rerun()
|
| 98 |
+
|
| 99 |
+
with col3:
|
| 100 |
+
if st.button("📚 History", use_container_width=True, key="history_btn"):
|
| 101 |
+
st.session_state.current_page = "history"
|
| 102 |
+
# RELOAD HISTORY WHEN NAVIGATING TO HISTORY PAGE
|
| 103 |
+
from components.session_manager import load_user_history_from_db
|
| 104 |
+
load_user_history_from_db()
|
| 105 |
+
st.rerun()
|
| 106 |
+
|
| 107 |
+
with col4:
|
| 108 |
+
if st.button("🔬 Research", use_container_width=True, key="research_btn"):
|
| 109 |
+
st.session_state.current_page = "research"
|
| 110 |
+
st.rerun()
|
| 111 |
+
|
| 112 |
+
def handle_regeneration():
|
| 113 |
+
"""Handle model regeneration when user switches models"""
|
| 114 |
+
if st.session_state.get("regenerate_with_new_model"):
|
| 115 |
+
# Clear the flag first to prevent loops
|
| 116 |
+
st.session_state.regenerate_with_new_model = False
|
| 117 |
+
|
| 118 |
+
# Show regeneration in progress
|
| 119 |
+
regeneration_status = st.empty()
|
| 120 |
+
regeneration_status.info("🔄 Regenerating content with new model...")
|
| 121 |
+
|
| 122 |
+
# Get the preserved context
|
| 123 |
+
user_type = st.session_state.user_type
|
| 124 |
+
student_level = st.session_state.student_level
|
| 125 |
+
|
| 126 |
+
# Trigger regeneration based on user type
|
| 127 |
+
if user_type == "student":
|
| 128 |
+
from components.student_flow import generate_student_content
|
| 129 |
+
content_text = st.session_state.get("original_content_text", "")
|
| 130 |
+
if content_text:
|
| 131 |
+
generate_student_content(content_text, student_level, "", "regenerated_content.pdf")
|
| 132 |
+
else:
|
| 133 |
+
from components.tutor_flow import generate_tutor_content
|
| 134 |
+
topic = st.session_state.get("original_topic", "")
|
| 135 |
+
objectives = st.session_state.get("original_objectives", "")
|
| 136 |
+
content_type = st.session_state.get("tutor_content_type", "Comprehensive Explanation")
|
| 137 |
+
if topic and objectives:
|
| 138 |
+
generate_tutor_content(topic, objectives, student_level, content_type, "")
|
| 139 |
+
|
| 140 |
+
regeneration_status.empty()
|
| 141 |
+
|
| 142 |
+
def handle_page_navigation():
|
| 143 |
+
current_page = st.session_state.get("current_page", "generator")
|
| 144 |
+
|
| 145 |
+
if current_page == "history":
|
| 146 |
+
# ENSURE HISTORY IS LOADED BEFORE RENDERING
|
| 147 |
+
from components.session_manager import load_user_history_from_db
|
| 148 |
+
load_user_history_from_db()
|
| 149 |
+
render_history_page()
|
| 150 |
+
elif current_page == "research":
|
| 151 |
+
try:
|
| 152 |
+
from components.research_dashboard import render_research_dashboard
|
| 153 |
+
render_research_dashboard()
|
| 154 |
+
except ImportError as e:
|
| 155 |
+
st.error("🔬 Research Dashboard - Import Error")
|
| 156 |
+
st.code(f"Error: {str(e)}")
|
| 157 |
+
st.info("""
|
| 158 |
+
**To fix this:**
|
| 159 |
+
1. Make sure `components/research_dashboard.py` exists
|
| 160 |
+
2. Check the file has no syntax errors
|
| 161 |
+
3. Restart the Streamlit app
|
| 162 |
+
""")
|
| 163 |
+
except Exception as e:
|
| 164 |
+
st.error("🔬 Research Dashboard - Runtime Error")
|
| 165 |
+
st.code(f"Error: {str(e)}")
|
| 166 |
+
st.info("The research dashboard encountered an error while running.")
|
| 167 |
+
else:
|
| 168 |
+
handle_generator_flow()
|
| 169 |
+
|
| 170 |
+
def handle_generator_flow():
|
| 171 |
+
# DEBUG: Check what's in session state
|
| 172 |
+
print(f"🔍 DEBUG handle_generator_flow:")
|
| 173 |
+
print(f" - generated_output: {bool(st.session_state.get('generated_output'))}")
|
| 174 |
+
print(f" - regenerated: {st.session_state.get('regenerated', False)}")
|
| 175 |
+
print(f" - feedback_given: {st.session_state.get('feedback_given', False)}")
|
| 176 |
+
print(f" - pending_regeneration: {st.session_state.get('pending_regeneration', False)}")
|
| 177 |
+
|
| 178 |
+
# Handle pending regeneration FIRST in the generator flow
|
| 179 |
+
if st.session_state.get('pending_regeneration'):
|
| 180 |
+
print("🔄 DEBUG: Handling pending regeneration in generator flow")
|
| 181 |
+
from components.feedback_handler import handle_pending_regeneration
|
| 182 |
+
handle_pending_regeneration()
|
| 183 |
+
|
| 184 |
+
# Check if we have content to display - REGARDLESS of regeneration status
|
| 185 |
+
if st.session_state.get("generated_output"):
|
| 186 |
+
print("✅ DEBUG: Rendering content sections")
|
| 187 |
+
render_output_section()
|
| 188 |
+
render_export_section()
|
| 189 |
+
render_feedback_section()
|
| 190 |
+
return
|
| 191 |
+
|
| 192 |
+
# If no content, check if we have a user type selected
|
| 193 |
+
if not st.session_state.user_type:
|
| 194 |
+
render_user_selection()
|
| 195 |
+
return
|
| 196 |
+
|
| 197 |
+
# If user type is selected but no content, render the appropriate flow
|
| 198 |
+
if st.session_state.user_type == "student":
|
| 199 |
+
render_student_flow()
|
| 200 |
+
else:
|
| 201 |
+
render_tutor_flow()
|
| 202 |
+
|
| 203 |
+
def render_user_selection():
|
| 204 |
+
st.header("🎯 Welcome to TailorED!")
|
| 205 |
+
st.subheader("Are you a Student or Tutor?")
|
| 206 |
+
|
| 207 |
+
col1, col2 = st.columns(2)
|
| 208 |
+
|
| 209 |
+
with col1:
|
| 210 |
+
if st.button("🎓 I'm a Student", use_container_width=True, key="student_btn"):
|
| 211 |
+
st.session_state.user_type = "student"
|
| 212 |
+
st.session_state.scrolled_to_top = False
|
| 213 |
+
st.rerun()
|
| 214 |
+
|
| 215 |
+
with col2:
|
| 216 |
+
if st.button("👨🏫 I'm a Tutor", use_container_width=True, key="tutor_btn"):
|
| 217 |
+
st.session_state.user_type = "tutor"
|
| 218 |
+
st.session_state.scrolled_to_top = False
|
| 219 |
+
st.rerun()
|
| 220 |
+
|
| 221 |
+
def handle_session_management():
|
| 222 |
+
# Only show start over if we have content
|
| 223 |
+
if (st.session_state.get("current_page") == "generator" and
|
| 224 |
+
st.session_state.get("generated_output") and
|
| 225 |
+
st.button("🆕 Start Over", key="start_over_btn")):
|
| 226 |
+
clear_session()
|
| 227 |
+
st.rerun()
|
| 228 |
+
|
| 229 |
+
if __name__ == "__main__":
|
| 230 |
+
main()
|
export_training_data_from_db.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from db.connection import SessionLocal
|
| 2 |
+
from db.models import ContentHistory, Feedback
|
| 3 |
+
from sqlalchemy.orm import joinedload
|
| 4 |
+
import os
|
| 5 |
+
import json
|
| 6 |
+
|
| 7 |
+
MIN_CLARITY = 4
|
| 8 |
+
MIN_DEPTH = 4
|
| 9 |
+
MIN_COMMENT_LENGTH = 25
|
| 10 |
+
|
| 11 |
+
def is_high_quality(feedback, content_entry):
|
| 12 |
+
"""Check if feedback meets high quality criteria for Groq content (fine-tuning data)"""
|
| 13 |
+
# Only use Groq content for fine-tuning (the established model)
|
| 14 |
+
if content_entry.generated_model != "groq":
|
| 15 |
+
print(f"❌ Skipping - not Groq content: {content_entry.generated_model}")
|
| 16 |
+
return False
|
| 17 |
+
|
| 18 |
+
# Quality criteria for fine-tuning data
|
| 19 |
+
if feedback.clarity < MIN_CLARITY:
|
| 20 |
+
print(f"❌ Clarity too low: {feedback.clarity} < {MIN_CLARITY}")
|
| 21 |
+
return False
|
| 22 |
+
|
| 23 |
+
if feedback.depth < MIN_DEPTH:
|
| 24 |
+
print(f"❌ Depth too low: {feedback.depth} < {MIN_DEPTH}")
|
| 25 |
+
return False
|
| 26 |
+
|
| 27 |
+
if feedback.complexity != "Just right":
|
| 28 |
+
print(f"❌ Complexity not 'Just right': {feedback.complexity}")
|
| 29 |
+
return False
|
| 30 |
+
|
| 31 |
+
comment_text = (feedback.comments or "").strip()
|
| 32 |
+
if len(comment_text) < MIN_COMMENT_LENGTH:
|
| 33 |
+
print(f"❌ Comment too short: {len(comment_text)} < {MIN_COMMENT_LENGTH}")
|
| 34 |
+
return False
|
| 35 |
+
|
| 36 |
+
print(f"✅ High-quality Groq feedback for fine-tuning: clarity={feedback.clarity}, depth={feedback.depth}")
|
| 37 |
+
return True
|
| 38 |
+
|
| 39 |
+
def format_training_example(entry, feedback):
|
| 40 |
+
"""Format a training example from Groq content and feedback"""
|
| 41 |
+
if entry.user_type == "student":
|
| 42 |
+
return {
|
| 43 |
+
"instruction": f"Simplify the following content for a {entry.student_level} student: {entry.prompt.strip()}",
|
| 44 |
+
"input": f"Student Level: {entry.student_level}",
|
| 45 |
+
"output": entry.output.strip(),
|
| 46 |
+
"metadata": {
|
| 47 |
+
"user_type": "student",
|
| 48 |
+
"student_level": entry.student_level,
|
| 49 |
+
"clarity_score": feedback.clarity,
|
| 50 |
+
"depth_score": feedback.depth,
|
| 51 |
+
"complexity": feedback.complexity,
|
| 52 |
+
"comments": feedback.comments
|
| 53 |
+
}
|
| 54 |
+
}
|
| 55 |
+
elif entry.user_type == "tutor":
|
| 56 |
+
return {
|
| 57 |
+
"instruction": f"Create a {entry.content_type} about '{entry.topic}' for {entry.student_level} students.",
|
| 58 |
+
"input": f"Learning Objectives: {entry.prompt}",
|
| 59 |
+
"output": entry.output.strip(),
|
| 60 |
+
"metadata": {
|
| 61 |
+
"user_type": "tutor",
|
| 62 |
+
"content_type": entry.content_type,
|
| 63 |
+
"topic": entry.topic,
|
| 64 |
+
"student_level": entry.student_level,
|
| 65 |
+
"clarity_score": feedback.clarity,
|
| 66 |
+
"depth_score": feedback.depth,
|
| 67 |
+
"complexity": feedback.complexity,
|
| 68 |
+
"comments": feedback.comments
|
| 69 |
+
}
|
| 70 |
+
}
|
| 71 |
+
return None
|
| 72 |
+
|
| 73 |
+
def export_training_data_from_db(output_file="data/training/phi3_fine_tuning_data.jsonl"):
|
| 74 |
+
"""Export Groq content with high-quality feedback for Phi-3 fine-tuning"""
|
| 75 |
+
print("🔧 Exporting Groq training data for Phi-3 fine-tuning...")
|
| 76 |
+
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
| 77 |
+
|
| 78 |
+
session = SessionLocal()
|
| 79 |
+
try:
|
| 80 |
+
# Get all content entries with their feedback
|
| 81 |
+
entries = session.query(ContentHistory).options(joinedload(ContentHistory.feedback)).all()
|
| 82 |
+
print(f"📊 Found {len(entries)} total content entries")
|
| 83 |
+
|
| 84 |
+
high_quality_groq = []
|
| 85 |
+
total_groq_feedback = 0
|
| 86 |
+
total_entries_checked = 0
|
| 87 |
+
|
| 88 |
+
for entry in entries:
|
| 89 |
+
total_entries_checked += 1
|
| 90 |
+
feedback_list = entry.feedback
|
| 91 |
+
print(f"🔍 Checking entry {total_entries_checked}/{len(entries)}: model={entry.generated_model}, user_type={entry.user_type}, feedback_count={len(feedback_list)}")
|
| 92 |
+
|
| 93 |
+
for feedback in feedback_list:
|
| 94 |
+
# Count all Groq feedback for statistics
|
| 95 |
+
if entry.generated_model == "groq":
|
| 96 |
+
total_groq_feedback += 1
|
| 97 |
+
print(f" 📝 Groq Feedback {total_groq_feedback}: clarity={feedback.clarity}, depth={feedback.depth}")
|
| 98 |
+
|
| 99 |
+
# Only export high-quality Groq feedback (for fine-tuning Phi-3)
|
| 100 |
+
if is_high_quality(feedback, entry):
|
| 101 |
+
example = format_training_example(entry, feedback)
|
| 102 |
+
if example:
|
| 103 |
+
high_quality_groq.append(example)
|
| 104 |
+
print(f" ✅ Added Groq training example")
|
| 105 |
+
|
| 106 |
+
print(f"📈 Export Summary:")
|
| 107 |
+
print(f" - Total entries checked: {total_entries_checked}")
|
| 108 |
+
print(f" - Total Groq feedback: {total_groq_feedback}")
|
| 109 |
+
print(f" - High-quality Groq examples: {len(high_quality_groq)}")
|
| 110 |
+
|
| 111 |
+
if not high_quality_groq:
|
| 112 |
+
print("❌ No high-quality Groq training data found.")
|
| 113 |
+
print("💡 Make sure you have Groq-generated content with high-quality feedback:")
|
| 114 |
+
print(f" - Generated by Groq model")
|
| 115 |
+
print(f" - Clarity >= {MIN_CLARITY}")
|
| 116 |
+
print(f" - Depth >= {MIN_DEPTH}")
|
| 117 |
+
print(f" - Complexity = 'Just right'")
|
| 118 |
+
print(f" - Comments length >= {MIN_COMMENT_LENGTH} characters")
|
| 119 |
+
return False
|
| 120 |
+
|
| 121 |
+
# Write to JSONL file (without metadata for training)
|
| 122 |
+
with open(output_file, "w", encoding="utf-8") as f:
|
| 123 |
+
for item in high_quality_groq:
|
| 124 |
+
# Remove metadata for actual training
|
| 125 |
+
training_item = {
|
| 126 |
+
"instruction": item["instruction"],
|
| 127 |
+
"input": item["input"],
|
| 128 |
+
"output": item["output"]
|
| 129 |
+
}
|
| 130 |
+
f.write(json.dumps(training_item, ensure_ascii=False) + "\n")
|
| 131 |
+
|
| 132 |
+
print(f"✅ Successfully exported {len(high_quality_groq)} Groq training examples to {output_file}")
|
| 133 |
+
|
| 134 |
+
# Show detailed breakdown
|
| 135 |
+
if high_quality_groq:
|
| 136 |
+
student_examples = len([e for e in high_quality_groq if "Simplify" in e["instruction"]])
|
| 137 |
+
tutor_examples = len([e for e in high_quality_groq if "Create a" in e["instruction"]])
|
| 138 |
+
print(f"📊 Breakdown: {student_examples} student examples, {tutor_examples} tutor examples")
|
| 139 |
+
|
| 140 |
+
print("📝 Sample training example:")
|
| 141 |
+
sample = high_quality_groq[0]
|
| 142 |
+
print(json.dumps({
|
| 143 |
+
"instruction": sample["instruction"][:100] + "...",
|
| 144 |
+
"input": sample["input"],
|
| 145 |
+
"output": sample["output"][:100] + "..."
|
| 146 |
+
}, indent=2, ensure_ascii=False))
|
| 147 |
+
|
| 148 |
+
return True
|
| 149 |
+
|
| 150 |
+
except Exception as e:
|
| 151 |
+
print(f"❌ Error exporting training data: {e}")
|
| 152 |
+
import traceback
|
| 153 |
+
traceback.print_exc()
|
| 154 |
+
return False
|
| 155 |
+
|
| 156 |
+
finally:
|
| 157 |
+
session.close()
|
| 158 |
+
|
| 159 |
+
if __name__ == "__main__":
|
| 160 |
+
export_training_data_from_db()
|
feedback.py
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
from db.helpers import get_research_stats
|
| 6 |
+
|
| 7 |
+
def save_feedback(prompt, output, clarity, depth, complexity, comments, user_type=None, student_level=None):
|
| 8 |
+
"""
|
| 9 |
+
Save user feedback to a JSONL file with additional metadata
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
# Create feedback directory if it doesn't exist
|
| 13 |
+
os.makedirs("data/feedback", exist_ok=True)
|
| 14 |
+
|
| 15 |
+
feedback_data = {
|
| 16 |
+
"timestamp": datetime.now().isoformat(),
|
| 17 |
+
"prompt": prompt,
|
| 18 |
+
"output": output,
|
| 19 |
+
"feedback": {
|
| 20 |
+
"clarity": clarity,
|
| 21 |
+
"depth": depth,
|
| 22 |
+
"complexity": complexity,
|
| 23 |
+
"comments": comments
|
| 24 |
+
},
|
| 25 |
+
"metadata": {
|
| 26 |
+
"user_type": user_type,
|
| 27 |
+
"student_level": student_level
|
| 28 |
+
}
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
# Save to JSONL file
|
| 32 |
+
feedback_file = "data/feedback/feedback.jsonl"
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
with open(feedback_file, "a", encoding="utf-8") as f:
|
| 36 |
+
f.write(json.dumps(feedback_data, ensure_ascii=False) + "\n")
|
| 37 |
+
|
| 38 |
+
print(f"✅ Feedback saved to {feedback_file}")
|
| 39 |
+
return True
|
| 40 |
+
|
| 41 |
+
except Exception as e:
|
| 42 |
+
print(f"❌ Error saving feedback: {e}")
|
| 43 |
+
return False
|
| 44 |
+
|
| 45 |
+
def load_feedback_data():
|
| 46 |
+
"""Load all feedback data for analysis"""
|
| 47 |
+
feedback_file = "data/feedback/feedback.jsonl"
|
| 48 |
+
|
| 49 |
+
if not os.path.exists(feedback_file):
|
| 50 |
+
return []
|
| 51 |
+
|
| 52 |
+
feedback_data = []
|
| 53 |
+
try:
|
| 54 |
+
with open(feedback_file, "r", encoding="utf-8") as f:
|
| 55 |
+
for line in f:
|
| 56 |
+
if line.strip():
|
| 57 |
+
feedback_data.append(json.loads(line.strip()))
|
| 58 |
+
return feedback_data
|
| 59 |
+
except Exception as e:
|
| 60 |
+
print(f"❌ Error loading feedback data: {e}")
|
| 61 |
+
return []
|
| 62 |
+
|
| 63 |
+
def get_feedback_stats():
|
| 64 |
+
"""Get basic statistics about collected feedback"""
|
| 65 |
+
feedback_data = load_feedback_data()
|
| 66 |
+
|
| 67 |
+
if not feedback_data:
|
| 68 |
+
return {
|
| 69 |
+
"total_feedback": 0,
|
| 70 |
+
"average_clarity": 0,
|
| 71 |
+
"average_depth": 0,
|
| 72 |
+
"complexity_distribution": {},
|
| 73 |
+
"user_type_distribution": {}
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
total = len(feedback_data)
|
| 77 |
+
clarity_sum = 0
|
| 78 |
+
depth_sum = 0
|
| 79 |
+
complexity_counts = {}
|
| 80 |
+
user_type_counts = {}
|
| 81 |
+
|
| 82 |
+
for entry in feedback_data:
|
| 83 |
+
clarity_sum += entry["feedback"]["clarity"]
|
| 84 |
+
depth_sum += entry["feedback"]["depth"]
|
| 85 |
+
|
| 86 |
+
complexity = entry["feedback"]["complexity"]
|
| 87 |
+
complexity_counts[complexity] = complexity_counts.get(complexity, 0) + 1
|
| 88 |
+
|
| 89 |
+
user_type = entry["metadata"].get("user_type", "unknown")
|
| 90 |
+
user_type_counts[user_type] = user_type_counts.get(user_type, 0) + 1
|
| 91 |
+
|
| 92 |
+
return {
|
| 93 |
+
"total_feedback": total,
|
| 94 |
+
"average_clarity": round(clarity_sum / total, 2) if total > 0 else 0,
|
| 95 |
+
"average_depth": round(depth_sum / total, 2) if total > 0 else 0,
|
| 96 |
+
"complexity_distribution": complexity_counts,
|
| 97 |
+
"user_type_distribution": user_type_counts
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
def is_high_quality_feedback(feedback_entry):
|
| 101 |
+
"""
|
| 102 |
+
SIMPLEST VERSION: Length-based filtering after removing emojis
|
| 103 |
+
Only uses high-quality, "just right" feedback for training
|
| 104 |
+
"""
|
| 105 |
+
feedback = feedback_entry["feedback"]
|
| 106 |
+
|
| 107 |
+
# Quality thresholds
|
| 108 |
+
MIN_CLARITY = 4
|
| 109 |
+
MIN_DEPTH = 4
|
| 110 |
+
MIN_COMMENT_LENGTH = 25 # Substantive comments after emoji removal
|
| 111 |
+
MIN_WORD_COUNT = 4 # Minimum words for substance
|
| 112 |
+
|
| 113 |
+
# Check ratings (must be high quality)
|
| 114 |
+
if feedback["clarity"] < MIN_CLARITY or feedback["depth"] < MIN_DEPTH:
|
| 115 |
+
return False
|
| 116 |
+
|
| 117 |
+
# Check complexity (we want "Just right" examples to replicate)
|
| 118 |
+
if feedback["complexity"] != "Just right":
|
| 119 |
+
return False
|
| 120 |
+
|
| 121 |
+
# Check comments if provided
|
| 122 |
+
comments = feedback.get("comments", "").strip()
|
| 123 |
+
|
| 124 |
+
if comments:
|
| 125 |
+
# Remove emojis first, then check length
|
| 126 |
+
emoji_pattern = re.compile(
|
| 127 |
+
r'[\U0001F600-\U0001F64F\U0001F300-\U0001F5FF\U0001F680-\U0001F6FF\U0001F1E0-\U0001F1FF\U00002600-\U000027BF\U0001F900-\U0001F9FF\U0001F018-\U0001F270👍👎😊😐😕❤️🔥]',
|
| 128 |
+
flags=re.UNICODE
|
| 129 |
+
)
|
| 130 |
+
text_without_emojis = emoji_pattern.sub('', comments).strip()
|
| 131 |
+
|
| 132 |
+
# Now apply length check on the cleaned text
|
| 133 |
+
if len(text_without_emojis) < MIN_COMMENT_LENGTH:
|
| 134 |
+
return False
|
| 135 |
+
|
| 136 |
+
# Check word count for minimal substance
|
| 137 |
+
word_count = len(text_without_emojis.split())
|
| 138 |
+
if word_count < MIN_WORD_COUNT:
|
| 139 |
+
return False
|
| 140 |
+
|
| 141 |
+
return True
|
| 142 |
+
|
| 143 |
+
def prepare_training_data():
|
| 144 |
+
"""
|
| 145 |
+
Prepare high-quality feedback for model fine-tuning
|
| 146 |
+
Returns structured training examples
|
| 147 |
+
"""
|
| 148 |
+
all_feedback = load_feedback_data()
|
| 149 |
+
|
| 150 |
+
training_examples = []
|
| 151 |
+
skipped_count = 0
|
| 152 |
+
|
| 153 |
+
for feedback in all_feedback:
|
| 154 |
+
if is_high_quality_feedback(feedback):
|
| 155 |
+
# Create training example from high-quality feedback
|
| 156 |
+
training_example = {
|
| 157 |
+
"instruction": feedback["prompt"],
|
| 158 |
+
"input": f"Student Level: {feedback['metadata'].get('student_level', 'Unknown')}",
|
| 159 |
+
"output": feedback["output"],
|
| 160 |
+
"metadata": {
|
| 161 |
+
"user_type": feedback["metadata"].get("user_type"),
|
| 162 |
+
"clarity_score": feedback["feedback"]["clarity"],
|
| 163 |
+
"depth_score": feedback["feedback"]["depth"],
|
| 164 |
+
"comments": feedback["feedback"].get("comments", "")
|
| 165 |
+
}
|
| 166 |
+
}
|
| 167 |
+
training_examples.append(training_example)
|
| 168 |
+
else:
|
| 169 |
+
skipped_count += 1
|
| 170 |
+
|
| 171 |
+
print(f"✅ Prepared {len(training_examples)} training examples (skipped {skipped_count} low-quality)")
|
| 172 |
+
return training_examples
|
| 173 |
+
|
| 174 |
+
def get_training_data_stats():
|
| 175 |
+
"""
|
| 176 |
+
Get statistics about prepared training data
|
| 177 |
+
"""
|
| 178 |
+
training_data = prepare_training_data()
|
| 179 |
+
|
| 180 |
+
if not training_data:
|
| 181 |
+
return {
|
| 182 |
+
"total_training_examples": 0,
|
| 183 |
+
"user_type_breakdown": {},
|
| 184 |
+
"average_scores": {"clarity": 0, "depth": 0}
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
user_type_counts = {}
|
| 188 |
+
clarity_sum = 0
|
| 189 |
+
depth_sum = 0
|
| 190 |
+
|
| 191 |
+
for example in training_data:
|
| 192 |
+
user_type = example["metadata"].get("user_type", "unknown")
|
| 193 |
+
user_type_counts[user_type] = user_type_counts.get(user_type, 0) + 1
|
| 194 |
+
|
| 195 |
+
clarity_sum += example["metadata"]["clarity_score"]
|
| 196 |
+
depth_sum += example["metadata"]["depth_score"]
|
| 197 |
+
|
| 198 |
+
return {
|
| 199 |
+
"total_training_examples": len(training_data),
|
| 200 |
+
"user_type_breakdown": user_type_counts,
|
| 201 |
+
"average_scores": {
|
| 202 |
+
"clarity": round(clarity_sum / len(training_data), 2),
|
| 203 |
+
"depth": round(depth_sum / len(training_data), 2)
|
| 204 |
+
}
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
def export_training_data(output_file="data/training/training_data.jsonl"):
|
| 208 |
+
"""
|
| 209 |
+
Export filtered training data to file for fine-tuning
|
| 210 |
+
"""
|
| 211 |
+
training_data = prepare_training_data()
|
| 212 |
+
|
| 213 |
+
if not training_data:
|
| 214 |
+
print("❌ No high-quality training data available")
|
| 215 |
+
return False
|
| 216 |
+
|
| 217 |
+
# Create directory if it doesn't exist
|
| 218 |
+
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
| 219 |
+
|
| 220 |
+
try:
|
| 221 |
+
with open(output_file, "w", encoding="utf-8") as f:
|
| 222 |
+
for example in training_data:
|
| 223 |
+
# Remove metadata for actual training
|
| 224 |
+
training_example = {
|
| 225 |
+
"instruction": example["instruction"],
|
| 226 |
+
"input": example["input"],
|
| 227 |
+
"output": example["output"]
|
| 228 |
+
}
|
| 229 |
+
f.write(json.dumps(training_example, ensure_ascii=False) + "\n")
|
| 230 |
+
|
| 231 |
+
print(f"✅ Exported {len(training_data)} training examples to {output_file}")
|
| 232 |
+
return True
|
| 233 |
+
|
| 234 |
+
except Exception as e:
|
| 235 |
+
print(f"❌ Error exporting training data: {e}")
|
| 236 |
+
return False
|
| 237 |
+
|
| 238 |
+
def get_research_progress():
|
| 239 |
+
"""Fetch research progress from PostgreSQL"""
|
| 240 |
+
stats = get_research_stats()
|
| 241 |
+
|
| 242 |
+
return {
|
| 243 |
+
"total_feedback": stats["total_feedback"],
|
| 244 |
+
"high_quality_examples": stats["high_quality_feedback"],
|
| 245 |
+
"conversion_rate": stats["conversion_rate"],
|
| 246 |
+
"average_quality": stats["average_scores"],
|
| 247 |
+
"user_breakdown": stats["user_type_breakdown"]
|
| 248 |
+
}
|
generator.py
ADDED
|
@@ -0,0 +1,1636 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import random
|
| 4 |
+
import requests
|
| 5 |
+
from openai import OpenAI
|
| 6 |
+
from typing import Dict, List, Optional
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
# Configure logging
|
| 10 |
+
logging.basicConfig(level=logging.INFO)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
def get_api_keys(service_name: str, key_names: List[str]) -> List[str]:
|
| 14 |
+
"""Get API keys from multiple sources with priority for HuggingFace Spaces"""
|
| 15 |
+
keys = []
|
| 16 |
+
|
| 17 |
+
# 1. HuggingFace Spaces Secrets (Primary)
|
| 18 |
+
for key_name in key_names:
|
| 19 |
+
# Try HF-specific naming first
|
| 20 |
+
hf_key_name = f"HF_{service_name.upper()}_{key_name}"
|
| 21 |
+
key = os.getenv(hf_key_name)
|
| 22 |
+
if key and key.strip():
|
| 23 |
+
keys.append(key.strip())
|
| 24 |
+
logger.info(f"✅ Found {service_name} key {key_name} in HuggingFace secrets")
|
| 25 |
+
|
| 26 |
+
# 2. Standard Environment Variables
|
| 27 |
+
for key_name in key_names:
|
| 28 |
+
key = os.getenv(key_name) or os.getenv(key_name.upper())
|
| 29 |
+
if key and key.strip() and key not in keys:
|
| 30 |
+
keys.append(key.strip())
|
| 31 |
+
logger.info(f"✅ Found {service_name} key {key_name} in environment")
|
| 32 |
+
|
| 33 |
+
# 3. Streamlit Secrets (Backward Compatibility)
|
| 34 |
+
try:
|
| 35 |
+
import streamlit as st
|
| 36 |
+
if hasattr(st, 'secrets') and service_name in st.secrets:
|
| 37 |
+
secrets = st.secrets[service_name]
|
| 38 |
+
for key_name in key_names:
|
| 39 |
+
key = secrets.get(key_name)
|
| 40 |
+
if key and key.strip() and key not in keys:
|
| 41 |
+
keys.append(key.strip())
|
| 42 |
+
logger.info(f"✅ Found {service_name} key {key_name} in Streamlit secrets")
|
| 43 |
+
except (ImportError, AttributeError):
|
| 44 |
+
pass
|
| 45 |
+
|
| 46 |
+
return keys
|
| 47 |
+
|
| 48 |
+
def get_groq_api_keys():
|
| 49 |
+
"""Get Groq API keys for all environments"""
|
| 50 |
+
return get_api_keys("groq", ["api_key", "api_key_1", "api_key_2"])
|
| 51 |
+
|
| 52 |
+
def get_ollama_url():
|
| 53 |
+
"""Get Ollama URL from multiple sources"""
|
| 54 |
+
|
| 55 |
+
# 1. HuggingFace Spaces
|
| 56 |
+
hf_url = os.getenv("HF_OLLAMA_URL")
|
| 57 |
+
if hf_url:
|
| 58 |
+
logger.info("✅ Found Ollama URL in HuggingFace secrets")
|
| 59 |
+
return hf_url
|
| 60 |
+
|
| 61 |
+
# 2. Environment Variables
|
| 62 |
+
env_url = os.getenv("OLLAMA_URL") or os.getenv("MODEL_URL")
|
| 63 |
+
if env_url:
|
| 64 |
+
logger.info("✅ Found Ollama URL in environment")
|
| 65 |
+
return env_url
|
| 66 |
+
|
| 67 |
+
# 3. Streamlit Secrets
|
| 68 |
+
try:
|
| 69 |
+
import streamlit as st
|
| 70 |
+
if hasattr(st, 'secrets') and 'ollama' in st.secrets:
|
| 71 |
+
url = st.secrets["ollama"].get("url")
|
| 72 |
+
if url:
|
| 73 |
+
logger.info("✅ Found Ollama URL in Streamlit secrets")
|
| 74 |
+
return url
|
| 75 |
+
except (ImportError, AttributeError):
|
| 76 |
+
pass
|
| 77 |
+
|
| 78 |
+
logger.warning("⚠️ No Ollama URL configured - local models will not be available")
|
| 79 |
+
return None
|
| 80 |
+
|
| 81 |
+
class MultiGroqGenerator:
|
| 82 |
+
def __init__(self):
|
| 83 |
+
self.providers = self._initialize_groq_providers()
|
| 84 |
+
self.models = self._get_best_models()
|
| 85 |
+
self.max_retries = 3
|
| 86 |
+
self.retry_delay = 2 # seconds
|
| 87 |
+
|
| 88 |
+
def _initialize_groq_providers(self):
|
| 89 |
+
"""Initialize multiple Groq API providers with different keys"""
|
| 90 |
+
providers = []
|
| 91 |
+
|
| 92 |
+
# Get all Groq API keys
|
| 93 |
+
groq_keys = get_groq_api_keys()
|
| 94 |
+
|
| 95 |
+
# Filter out None values and create providers
|
| 96 |
+
for i, key in enumerate(groq_keys):
|
| 97 |
+
if key and key.strip():
|
| 98 |
+
providers.append({
|
| 99 |
+
'name': f'Groq-{i+1}',
|
| 100 |
+
'client': OpenAI(
|
| 101 |
+
api_key=key.strip(),
|
| 102 |
+
base_url="https://api.groq.com/openai/v1"
|
| 103 |
+
),
|
| 104 |
+
'weight': 10,
|
| 105 |
+
'fail_count': 0,
|
| 106 |
+
'last_used': 0
|
| 107 |
+
})
|
| 108 |
+
|
| 109 |
+
if not providers:
|
| 110 |
+
logger.warning("❌ No Groq API keys found")
|
| 111 |
+
return []
|
| 112 |
+
|
| 113 |
+
logger.info(f"✅ Initialized {len(providers)} Groq providers")
|
| 114 |
+
return providers
|
| 115 |
+
|
| 116 |
+
def _get_best_models(self):
|
| 117 |
+
"""Select optimal models for educational content"""
|
| 118 |
+
return [
|
| 119 |
+
{
|
| 120 |
+
'id': 'llama-3.3-70b-versatile',
|
| 121 |
+
'name': 'Llama 3.3 70B',
|
| 122 |
+
'weight': 10,
|
| 123 |
+
'max_tokens': 32768,
|
| 124 |
+
'description': 'Best for complex explanations'
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
'id': 'meta-llama/llama-4-maverick-17b-128e-instruct',
|
| 128 |
+
'name': 'Llama 4 Maverick 17B',
|
| 129 |
+
'weight': 9,
|
| 130 |
+
'max_tokens': 128000,
|
| 131 |
+
'description': 'Large context for big documents'
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
'id': 'llama-3.1-8b-instant',
|
| 135 |
+
'name': 'Llama 3.1 8B Instant',
|
| 136 |
+
'weight': 8,
|
| 137 |
+
'max_tokens': 32768,
|
| 138 |
+
'description': 'Fast for most content'
|
| 139 |
+
},
|
| 140 |
+
]
|
| 141 |
+
|
| 142 |
+
def _select_provider(self):
|
| 143 |
+
"""Select provider based on weight and fail history"""
|
| 144 |
+
if not self.providers:
|
| 145 |
+
return None
|
| 146 |
+
|
| 147 |
+
available_providers = [
|
| 148 |
+
p for p in self.providers
|
| 149 |
+
if p['fail_count'] < 3 and (time.time() - p['last_used']) > 30
|
| 150 |
+
]
|
| 151 |
+
|
| 152 |
+
if not available_providers:
|
| 153 |
+
available_providers = self.providers
|
| 154 |
+
for p in available_providers:
|
| 155 |
+
p['fail_count'] = max(0, p['fail_count'] - 1)
|
| 156 |
+
|
| 157 |
+
weights = [p['weight'] for p in available_providers]
|
| 158 |
+
selected = random.choices(available_providers, weights=weights, k=1)[0]
|
| 159 |
+
selected['last_used'] = time.time()
|
| 160 |
+
return selected
|
| 161 |
+
|
| 162 |
+
def _select_model(self, prompt_length: int):
|
| 163 |
+
"""Select optimal model based on prompt size"""
|
| 164 |
+
approx_tokens = prompt_length // 4
|
| 165 |
+
|
| 166 |
+
if approx_tokens > 20000:
|
| 167 |
+
return self.models[1] # Maverick for huge docs
|
| 168 |
+
elif approx_tokens > 10000:
|
| 169 |
+
return self.models[1] # Maverick for large docs
|
| 170 |
+
elif approx_tokens > 6000:
|
| 171 |
+
return self.models[0] # 70B for medium-large
|
| 172 |
+
elif approx_tokens > 3000:
|
| 173 |
+
return self.models[0] # 70B for quality
|
| 174 |
+
else:
|
| 175 |
+
return self.models[2] # 8B for speed
|
| 176 |
+
|
| 177 |
+
def generate(self, prompt: str) -> str:
|
| 178 |
+
"""Generate content with automatic failover"""
|
| 179 |
+
if not self.providers:
|
| 180 |
+
return "❌ Groq Error: No API keys configured. Please set GROQ_API_KEY in HuggingFace secrets or environment variables."
|
| 181 |
+
|
| 182 |
+
last_error = None
|
| 183 |
+
prompt_length = len(prompt)
|
| 184 |
+
|
| 185 |
+
for attempt in range(self.max_retries + 1):
|
| 186 |
+
provider = self._select_provider()
|
| 187 |
+
model = self._select_model(prompt_length)
|
| 188 |
+
|
| 189 |
+
if not provider:
|
| 190 |
+
return "❌ Groq Error: No available providers"
|
| 191 |
+
|
| 192 |
+
try:
|
| 193 |
+
logger.info(f"🔄 Attempt {attempt + 1} with {provider['name']} using {model['name']}...")
|
| 194 |
+
|
| 195 |
+
result = self._call_groq(provider, model, prompt)
|
| 196 |
+
|
| 197 |
+
if result and not result.startswith(("[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "[ModelNotFound]")):
|
| 198 |
+
logger.info(f"✅ Success with {provider['name']} + {model['name']}")
|
| 199 |
+
provider['weight'] = min(20, provider['weight'] + 1)
|
| 200 |
+
provider['fail_count'] = max(0, provider['fail_count'] - 1)
|
| 201 |
+
return result
|
| 202 |
+
else:
|
| 203 |
+
logger.warning(f"❌ Provider returned: {result}")
|
| 204 |
+
if "[ModelNotFound]" in result:
|
| 205 |
+
continue
|
| 206 |
+
|
| 207 |
+
except Exception as e:
|
| 208 |
+
last_error = str(e)
|
| 209 |
+
logger.error(f"❌ {provider['name']} + {model['name']} failed: {last_error}")
|
| 210 |
+
provider['weight'] = max(1, provider['weight'] - 2)
|
| 211 |
+
provider['fail_count'] += 1
|
| 212 |
+
|
| 213 |
+
if attempt < self.max_retries:
|
| 214 |
+
delay = self.retry_delay * (2 ** attempt)
|
| 215 |
+
logger.info(f"⏰ Waiting {delay}s before retry...")
|
| 216 |
+
time.sleep(delay)
|
| 217 |
+
|
| 218 |
+
return self._fallback_generate(prompt)
|
| 219 |
+
|
| 220 |
+
def generate_large_content(self, prompt: str) -> str:
|
| 221 |
+
"""Handle large content generation for Groq - compatibility method"""
|
| 222 |
+
logger.info("🔷 Using Groq for large content generation...")
|
| 223 |
+
|
| 224 |
+
# For Groq, we can handle large content directly due to large context windows
|
| 225 |
+
# Just use the normal generate method with optimized model selection
|
| 226 |
+
prompt_length = len(prompt)
|
| 227 |
+
|
| 228 |
+
if prompt_length > 20000: # Very large prompt
|
| 229 |
+
logger.info("📝 Large prompt detected, optimizing for Groq Maverick...")
|
| 230 |
+
# Temporarily prioritize Maverick for large contexts
|
| 231 |
+
original_models = self.models.copy()
|
| 232 |
+
self.models = [self.models[1]] # Maverick has 128K context
|
| 233 |
+
try:
|
| 234 |
+
result = self.generate(prompt)
|
| 235 |
+
return result
|
| 236 |
+
finally:
|
| 237 |
+
self.models = original_models # Restore original models
|
| 238 |
+
else:
|
| 239 |
+
# Use normal generation
|
| 240 |
+
return self.generate(prompt)
|
| 241 |
+
|
| 242 |
+
def _fallback_generate(self, prompt: str) -> str:
|
| 243 |
+
"""Fallback generation with simpler model selection"""
|
| 244 |
+
logger.info("🔄 Trying fallback generation...")
|
| 245 |
+
|
| 246 |
+
fallback_models = [self.models[2], self.models[0]]
|
| 247 |
+
|
| 248 |
+
for model in fallback_models:
|
| 249 |
+
for provider in self.providers:
|
| 250 |
+
try:
|
| 251 |
+
logger.info(f"🔄 Fallback with {provider['name']} using {model['name']}...")
|
| 252 |
+
result = self._call_groq(provider, model, prompt)
|
| 253 |
+
|
| 254 |
+
if result and not result.startswith(("[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "[ModelNotFound]")):
|
| 255 |
+
logger.info(f"✅ Fallback success with {provider['name']} + {model['name']}")
|
| 256 |
+
return result
|
| 257 |
+
except Exception as e:
|
| 258 |
+
logger.error(f"❌ Fallback failed: {e}")
|
| 259 |
+
continue
|
| 260 |
+
|
| 261 |
+
return self._get_user_friendly_error("All models failed")
|
| 262 |
+
|
| 263 |
+
def _call_groq(self, provider, model, prompt: str) -> str:
|
| 264 |
+
"""Call Groq API with specific provider and model"""
|
| 265 |
+
try:
|
| 266 |
+
prompt_tokens_approx = len(prompt) // 4
|
| 267 |
+
available_tokens = model['max_tokens'] - prompt_tokens_approx - 500
|
| 268 |
+
max_response_tokens = max(1000, min(8000, available_tokens))
|
| 269 |
+
|
| 270 |
+
response = provider['client'].chat.completions.create(
|
| 271 |
+
model=model['id'],
|
| 272 |
+
messages=[{"role": "user", "content": prompt}],
|
| 273 |
+
temperature=0.7,
|
| 274 |
+
max_tokens=max_response_tokens,
|
| 275 |
+
top_p=0.9
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
if (response and response.choices and len(response.choices) > 0 and
|
| 279 |
+
response.choices[0].message and response.choices[0].message.content):
|
| 280 |
+
|
| 281 |
+
content = response.choices[0].message.content.strip()
|
| 282 |
+
return content if content else "[Empty] No content generated"
|
| 283 |
+
else:
|
| 284 |
+
return "[Empty] Invalid response structure"
|
| 285 |
+
|
| 286 |
+
except Exception as e:
|
| 287 |
+
error_msg = str(e).lower()
|
| 288 |
+
|
| 289 |
+
if "rate limit" in error_msg or "429" in error_msg:
|
| 290 |
+
return f"[RateLimit] {provider['name']} rate limit exceeded"
|
| 291 |
+
elif "quota" in error_msg:
|
| 292 |
+
return f"[Quota] {provider['name']} quota exceeded"
|
| 293 |
+
elif "authentication" in error_msg:
|
| 294 |
+
return f"[Auth] {provider['name']} authentication failed"
|
| 295 |
+
elif "context length" in error_msg:
|
| 296 |
+
return f"[Length] {provider['name']} content too long"
|
| 297 |
+
elif "model not found" in error_msg:
|
| 298 |
+
return f"[ModelNotFound] {provider['name']}: {str(e)}"
|
| 299 |
+
else:
|
| 300 |
+
return f"[Error] {provider['name']}: {str(e)}"
|
| 301 |
+
|
| 302 |
+
def _get_user_friendly_error(self, technical_error: str) -> str:
|
| 303 |
+
"""Convert technical errors to user-friendly messages"""
|
| 304 |
+
error_lower = technical_error.lower()
|
| 305 |
+
|
| 306 |
+
if "rate limit" in error_lower:
|
| 307 |
+
return "🚫 **Service Busy** - Please wait a few minutes and try again"
|
| 308 |
+
elif "quota" in error_lower:
|
| 309 |
+
return "📊 **Daily Limit Reached** - Try again tomorrow"
|
| 310 |
+
elif "length" in error_lower:
|
| 311 |
+
return "📝 **Content Too Large** - Please break into smaller sections"
|
| 312 |
+
else:
|
| 313 |
+
return "❌ **Temporary Issue** - Please try again shortly"
|
| 314 |
+
|
| 315 |
+
def get_service_status(self) -> dict:
|
| 316 |
+
"""Get current status of all providers"""
|
| 317 |
+
status = {
|
| 318 |
+
'total_providers': len(self.providers),
|
| 319 |
+
'healthy_providers': len([p for p in self.providers if p['fail_count'] < 2]),
|
| 320 |
+
'providers': [],
|
| 321 |
+
'models': [m['name'] for m in self.models]
|
| 322 |
+
}
|
| 323 |
+
|
| 324 |
+
for provider in self.providers:
|
| 325 |
+
if provider['fail_count'] >= 3:
|
| 326 |
+
status_text = "🔴 Limited"
|
| 327 |
+
elif provider['fail_count'] >= 1:
|
| 328 |
+
status_text = "🟡 Slow"
|
| 329 |
+
else:
|
| 330 |
+
status_text = "🟢 Good"
|
| 331 |
+
|
| 332 |
+
status['providers'].append({
|
| 333 |
+
'name': provider['name'],
|
| 334 |
+
'status': status_text,
|
| 335 |
+
'failures': provider['fail_count']
|
| 336 |
+
})
|
| 337 |
+
|
| 338 |
+
return status
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
class HFGenerator:
|
| 342 |
+
"""Phi-3 Generator with Auto-Pull, Smart Chunking, and Context Preservation"""
|
| 343 |
+
|
| 344 |
+
def __init__(self, base_url: str = None):
|
| 345 |
+
# Use environment variable or Streamlit secret as default
|
| 346 |
+
self.base_url = base_url or get_ollama_url()
|
| 347 |
+
self.model = "phi3:mini"
|
| 348 |
+
self.current_requests = 0
|
| 349 |
+
self.max_concurrent = 2
|
| 350 |
+
self.model_available = False
|
| 351 |
+
|
| 352 |
+
# Only try to connect if base_url is provided
|
| 353 |
+
if self.base_url:
|
| 354 |
+
self._ensure_model_available()
|
| 355 |
+
else:
|
| 356 |
+
logger.warning("⚠️ Ollama URL not configured - Phi-3 will not be available")
|
| 357 |
+
|
| 358 |
+
def _ensure_model_available(self):
|
| 359 |
+
"""Check if model is available and pull if needed"""
|
| 360 |
+
try:
|
| 361 |
+
response = requests.get(f"{self.base_url}/api/tags", timeout=10)
|
| 362 |
+
if response.status_code == 200:
|
| 363 |
+
models = response.json().get('models', [])
|
| 364 |
+
self.model_available = any(model['name'] == self.model for model in models)
|
| 365 |
+
|
| 366 |
+
if not self.model_available:
|
| 367 |
+
logger.info(f"🔄 Model {self.model} not found, pulling...")
|
| 368 |
+
self._pull_model()
|
| 369 |
+
else:
|
| 370 |
+
logger.info(f"✅ Model {self.model} is available")
|
| 371 |
+
else:
|
| 372 |
+
logger.warning(f"❌ Could not check models: {response.status_code}")
|
| 373 |
+
except Exception as e:
|
| 374 |
+
logger.error(f"❌ Error checking models: {e}")
|
| 375 |
+
|
| 376 |
+
def _pull_model(self):
|
| 377 |
+
"""Pull the Phi-3 model if not available"""
|
| 378 |
+
try:
|
| 379 |
+
logger.info(f"📥 Pulling {self.model}... This may take a few minutes.")
|
| 380 |
+
|
| 381 |
+
payload = {"name": self.model}
|
| 382 |
+
response = requests.post(
|
| 383 |
+
f"{self.base_url}/api/pull",
|
| 384 |
+
json=payload,
|
| 385 |
+
timeout=300 # 5 minute timeout for pull
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
if response.status_code == 200:
|
| 389 |
+
logger.info(f"✅ Successfully pulled {self.model}")
|
| 390 |
+
self.model_available = True
|
| 391 |
+
return True
|
| 392 |
+
else:
|
| 393 |
+
logger.error(f"❌ Failed to pull model: {response.text}")
|
| 394 |
+
return False
|
| 395 |
+
|
| 396 |
+
except Exception as e:
|
| 397 |
+
logger.error(f"❌ Error pulling model: {e}")
|
| 398 |
+
return False
|
| 399 |
+
|
| 400 |
+
def _estimate_tokens(self, text: str) -> int:
|
| 401 |
+
"""Rough token estimation"""
|
| 402 |
+
return len(text) // 4
|
| 403 |
+
|
| 404 |
+
def _chunk_content(self, content: str, max_tokens: int = 2500) -> list:
|
| 405 |
+
"""Split large content into manageable chunks"""
|
| 406 |
+
paragraphs = content.split('\n\n')
|
| 407 |
+
chunks = []
|
| 408 |
+
current_chunk = ""
|
| 409 |
+
current_tokens = 0
|
| 410 |
+
|
| 411 |
+
for paragraph in paragraphs:
|
| 412 |
+
para_tokens = self._estimate_tokens(paragraph)
|
| 413 |
+
|
| 414 |
+
if para_tokens > max_tokens:
|
| 415 |
+
sentences = paragraph.split('. ')
|
| 416 |
+
for sentence in sentences:
|
| 417 |
+
sent_tokens = self._estimate_tokens(sentence)
|
| 418 |
+
if current_tokens + sent_tokens > max_tokens:
|
| 419 |
+
if current_chunk:
|
| 420 |
+
chunks.append(current_chunk.strip())
|
| 421 |
+
current_chunk = sentence
|
| 422 |
+
current_tokens = sent_tokens
|
| 423 |
+
else:
|
| 424 |
+
current_chunk += " " + sentence
|
| 425 |
+
current_tokens += sent_tokens
|
| 426 |
+
else:
|
| 427 |
+
if current_tokens + para_tokens > max_tokens:
|
| 428 |
+
if current_chunk:
|
| 429 |
+
chunks.append(current_chunk.strip())
|
| 430 |
+
current_chunk = paragraph
|
| 431 |
+
current_tokens = para_tokens
|
| 432 |
+
else:
|
| 433 |
+
current_chunk += "\n\n" + paragraph
|
| 434 |
+
current_tokens += para_tokens
|
| 435 |
+
|
| 436 |
+
if current_chunk:
|
| 437 |
+
chunks.append(current_chunk.strip())
|
| 438 |
+
|
| 439 |
+
return chunks
|
| 440 |
+
|
| 441 |
+
def _create_context_summary(self, previous_chunks: list) -> str:
|
| 442 |
+
"""Create a context summary from previous chunks"""
|
| 443 |
+
if not previous_chunks:
|
| 444 |
+
return ""
|
| 445 |
+
|
| 446 |
+
context_prompt = f"""
|
| 447 |
+
Here's a summary of previous sections:
|
| 448 |
+
{chr(10).join(previous_chunks)}
|
| 449 |
+
|
| 450 |
+
Provide a brief summary (2-3 sentences) of key points to help understand the next section.
|
| 451 |
+
"""
|
| 452 |
+
|
| 453 |
+
try:
|
| 454 |
+
payload = {
|
| 455 |
+
"model": self.model,
|
| 456 |
+
"messages": [{"role": "user", "content": context_prompt}],
|
| 457 |
+
"stream": False,
|
| 458 |
+
"options": {
|
| 459 |
+
"temperature": 0.3,
|
| 460 |
+
"top_p": 0.8,
|
| 461 |
+
"num_predict": 200
|
| 462 |
+
}
|
| 463 |
+
}
|
| 464 |
+
|
| 465 |
+
response = requests.post(f"{self.base_url}/api/chat", json=payload, timeout=30)
|
| 466 |
+
if response.status_code == 200:
|
| 467 |
+
return response.json()['message']['content'].strip()
|
| 468 |
+
return f"Previous sections covered: {', '.join(previous_chunks[:2])}..."
|
| 469 |
+
except Exception:
|
| 470 |
+
return f"Context from {len(previous_chunks)} previous sections"
|
| 471 |
+
|
| 472 |
+
def _create_chunk_summary(self, content: str) -> str:
|
| 473 |
+
"""Create a very brief summary of a chunk's content"""
|
| 474 |
+
try:
|
| 475 |
+
payload = {
|
| 476 |
+
"model": self.model,
|
| 477 |
+
"messages": [{"role": "user", "content": f"Summarize key points in 1-2 sentences: {content}"}],
|
| 478 |
+
"stream": False,
|
| 479 |
+
"options": {
|
| 480 |
+
"temperature": 0.3,
|
| 481 |
+
"top_p": 0.8,
|
| 482 |
+
"num_predict": 100
|
| 483 |
+
}
|
| 484 |
+
}
|
| 485 |
+
|
| 486 |
+
response = requests.post(f"{self.base_url}/api/chat", json=payload, timeout=20)
|
| 487 |
+
if response.status_code == 200:
|
| 488 |
+
return response.json()['message']['content'].strip()
|
| 489 |
+
return content[:100] + "..."
|
| 490 |
+
except:
|
| 491 |
+
return content[:100] + "..."
|
| 492 |
+
|
| 493 |
+
def _call_ollama_with_retry(self, payload: dict, max_retries: int = 2) -> Dict:
|
| 494 |
+
"""Call Ollama API with auto-pull retry"""
|
| 495 |
+
for attempt in range(max_retries + 1):
|
| 496 |
+
try:
|
| 497 |
+
response = requests.post(
|
| 498 |
+
f"{self.base_url}/api/chat",
|
| 499 |
+
json=payload,
|
| 500 |
+
timeout=60
|
| 501 |
+
)
|
| 502 |
+
|
| 503 |
+
if response.status_code == 200:
|
| 504 |
+
return {"success": True, "data": response.json()}
|
| 505 |
+
elif response.status_code == 404 and "not found" in response.text.lower():
|
| 506 |
+
logger.info(f"🔄 Model not found, attempting to pull... (attempt {attempt + 1})")
|
| 507 |
+
if self._pull_model():
|
| 508 |
+
continue # Retry after successful pull
|
| 509 |
+
else:
|
| 510 |
+
return {"success": False, "error": "Failed to pull model"}
|
| 511 |
+
else:
|
| 512 |
+
return {"success": False, "error": f"API error {response.status_code}: {response.text}"}
|
| 513 |
+
|
| 514 |
+
except requests.exceptions.Timeout:
|
| 515 |
+
if attempt < max_retries:
|
| 516 |
+
logger.info(f"⏰ Timeout, retrying... (attempt {attempt + 1})")
|
| 517 |
+
time.sleep(2)
|
| 518 |
+
else:
|
| 519 |
+
return {"success": False, "error": "Request timeout"}
|
| 520 |
+
except Exception as e:
|
| 521 |
+
return {"success": False, "error": f"Connection failed: {str(e)}"}
|
| 522 |
+
|
| 523 |
+
return {"success": False, "error": "All retries failed"}
|
| 524 |
+
|
| 525 |
+
def generate(self, prompt: str, user_type: str = "student",
|
| 526 |
+
academic_level: str = "undergraduate",
|
| 527 |
+
content_type: str = "simplified_explanation") -> str:
|
| 528 |
+
"""Generate educational content with auto-pull and smart features"""
|
| 529 |
+
|
| 530 |
+
# Check if Ollama is configured
|
| 531 |
+
if not self.base_url:
|
| 532 |
+
return "❌ Phi-3 Error: Ollama URL not configured. Please set MODEL_URL environment variable or add to HuggingFace secrets."
|
| 533 |
+
|
| 534 |
+
# Check if we need to pull model first
|
| 535 |
+
if not self.model_available:
|
| 536 |
+
logger.info("🔄 Model not available, pulling before generation...")
|
| 537 |
+
if not self._pull_model():
|
| 538 |
+
return f"❌ Phi-3 Error: Phi-3 model is not available and failed to pull. Please check the Ollama server."
|
| 539 |
+
|
| 540 |
+
estimated_tokens = self._estimate_tokens(prompt)
|
| 541 |
+
|
| 542 |
+
# Auto-detect large documents and use chunking
|
| 543 |
+
if estimated_tokens > 3000:
|
| 544 |
+
result = self.generate_large_content_with_context(prompt, user_type, academic_level, content_type)
|
| 545 |
+
if isinstance(result, dict):
|
| 546 |
+
return result.get("content", f"❌ Phi-3 Error: {result.get('error', 'Unknown error')}")
|
| 547 |
+
return result
|
| 548 |
+
|
| 549 |
+
# Queue management
|
| 550 |
+
if self.current_requests >= self.max_concurrent:
|
| 551 |
+
queue_position = self.current_requests - self.max_concurrent + 1
|
| 552 |
+
estimated_wait = queue_position * 7
|
| 553 |
+
return f"❌ Phi-3 Error: Service busy. You're #{queue_position} in queue (~{estimated_wait}s)"
|
| 554 |
+
|
| 555 |
+
self.current_requests += 1
|
| 556 |
+
try:
|
| 557 |
+
# FIXED: Increased token allocation for complete responses
|
| 558 |
+
if estimated_tokens > 2000:
|
| 559 |
+
max_output_tokens = 2000 # Increased from 500
|
| 560 |
+
elif estimated_tokens > 1000:
|
| 561 |
+
max_output_tokens = 2500 # Increased from 800
|
| 562 |
+
else:
|
| 563 |
+
max_output_tokens = 3000 # Increased from 1000
|
| 564 |
+
|
| 565 |
+
payload = {
|
| 566 |
+
"model": self.model,
|
| 567 |
+
"messages": [{"role": "user", "content": prompt}],
|
| 568 |
+
"stream": False,
|
| 569 |
+
"options": {
|
| 570 |
+
"temperature": 0.7,
|
| 571 |
+
"top_p": 0.9,
|
| 572 |
+
"num_predict": max_output_tokens
|
| 573 |
+
}
|
| 574 |
+
}
|
| 575 |
+
|
| 576 |
+
start_time = time.time()
|
| 577 |
+
result = self._call_ollama_with_retry(payload)
|
| 578 |
+
inference_time = time.time() - start_time
|
| 579 |
+
|
| 580 |
+
if result["success"]:
|
| 581 |
+
data = result["data"]
|
| 582 |
+
content = data['message']['content'].strip()
|
| 583 |
+
|
| 584 |
+
# Check if content was cut off and retry with more tokens if needed
|
| 585 |
+
if self._is_content_cut_off(content):
|
| 586 |
+
logger.info("⚠️ Content appears cut off, retrying with more tokens...")
|
| 587 |
+
payload["options"]["num_predict"] = 4000 # Max tokens for Phi-3
|
| 588 |
+
retry_result = self._call_ollama_with_retry(payload)
|
| 589 |
+
|
| 590 |
+
if retry_result["success"]:
|
| 591 |
+
data = retry_result["data"]
|
| 592 |
+
content = data['message']['content'].strip()
|
| 593 |
+
|
| 594 |
+
return content
|
| 595 |
+
else:
|
| 596 |
+
return f"❌ Phi-3 Error: {result['error']}"
|
| 597 |
+
|
| 598 |
+
except Exception as e:
|
| 599 |
+
return f"❌ Phi-3 Error: {str(e)}"
|
| 600 |
+
finally:
|
| 601 |
+
self.current_requests -= 1
|
| 602 |
+
|
| 603 |
+
def _is_content_cut_off(self, content: str) -> bool:
|
| 604 |
+
"""Check if content appears to be cut off mid-sentence"""
|
| 605 |
+
if not content or len(content.strip()) < 100:
|
| 606 |
+
return True
|
| 607 |
+
|
| 608 |
+
# Check if it ends with proper punctuation
|
| 609 |
+
if content.strip().endswith(('.', '!', '?', '."', '!"', '?"')):
|
| 610 |
+
return False
|
| 611 |
+
|
| 612 |
+
# Check if it ends with incomplete sentence markers
|
| 613 |
+
if any(content.strip().endswith(marker) for marker in [',', ';', ':', '-', '–', '—']):
|
| 614 |
+
return True
|
| 615 |
+
|
| 616 |
+
# Check if it ends with an incomplete word or thought
|
| 617 |
+
last_paragraph = content.strip().split('\n')[-1]
|
| 618 |
+
if len(last_paragraph.split()) < 5: # Very short last paragraph
|
| 619 |
+
return True
|
| 620 |
+
|
| 621 |
+
return False
|
| 622 |
+
|
| 623 |
+
def generate_large_content_with_context(self, prompt: str, user_type: str = "student",
|
| 624 |
+
academic_level: str = "undergraduate",
|
| 625 |
+
content_type: str = "simplified_explanation") -> str:
|
| 626 |
+
"""Handle large documents with context preservation"""
|
| 627 |
+
|
| 628 |
+
estimated_tokens = self._estimate_tokens(prompt)
|
| 629 |
+
|
| 630 |
+
if estimated_tokens <= 3000:
|
| 631 |
+
return self.generate(prompt, user_type, academic_level, content_type)
|
| 632 |
+
|
| 633 |
+
chunks = self._chunk_content(prompt, max_tokens=2500)
|
| 634 |
+
|
| 635 |
+
if len(chunks) > 6:
|
| 636 |
+
return f"❌ Phi-3 Error: Document too large ({estimated_tokens} tokens, {len(chunks)} chunks). Please use Groq or break into smaller sections."
|
| 637 |
+
|
| 638 |
+
all_results = []
|
| 639 |
+
previous_summaries = []
|
| 640 |
+
|
| 641 |
+
for i, chunk in enumerate(chunks):
|
| 642 |
+
logger.info(f"🔄 Processing chunk {i+1}/{len(chunks)} with context...")
|
| 643 |
+
|
| 644 |
+
context_summary = self._create_context_summary(previous_summaries)
|
| 645 |
+
|
| 646 |
+
if context_summary:
|
| 647 |
+
chunk_prompt = f"""Part {i+1} of {len(chunks)} - Building on previous context:
|
| 648 |
+
|
| 649 |
+
**PREVIOUS CONTEXT:**
|
| 650 |
+
{context_summary}
|
| 651 |
+
|
| 652 |
+
**CURRENT SECTION:**
|
| 653 |
+
{chunk}
|
| 654 |
+
|
| 655 |
+
Analyze this section while connecting to the overall context."""
|
| 656 |
+
else:
|
| 657 |
+
chunk_prompt = f"""Part {i+1} of {len(chunks)}:
|
| 658 |
+
|
| 659 |
+
**CONTENT:**
|
| 660 |
+
{chunk}
|
| 661 |
+
|
| 662 |
+
Please analyze this section."""
|
| 663 |
+
|
| 664 |
+
chunk_result = self.generate(chunk_prompt, user_type, academic_level, content_type)
|
| 665 |
+
|
| 666 |
+
if "❌ Phi-3 Error:" not in chunk_result:
|
| 667 |
+
chunk_summary = self._create_chunk_summary(chunk_result)
|
| 668 |
+
previous_summaries.append(chunk_summary)
|
| 669 |
+
|
| 670 |
+
all_results.append({
|
| 671 |
+
"chunk_number": i+1,
|
| 672 |
+
"content": chunk_result,
|
| 673 |
+
"context_used": bool(context_summary)
|
| 674 |
+
})
|
| 675 |
+
else:
|
| 676 |
+
return f"❌ Phi-3 Error: Failed to process chunk {i+1}: {chunk_result}"
|
| 677 |
+
|
| 678 |
+
if i < len(chunks) - 1:
|
| 679 |
+
time.sleep(1)
|
| 680 |
+
|
| 681 |
+
# Combine results
|
| 682 |
+
combined_content = "\n\n".join([f"## Part {r['chunk_number']}\n{r['content']}" for r in all_results])
|
| 683 |
+
|
| 684 |
+
return combined_content
|
| 685 |
+
|
| 686 |
+
def health_check(self) -> Dict:
|
| 687 |
+
"""Comprehensive health check"""
|
| 688 |
+
if not self.base_url:
|
| 689 |
+
return {
|
| 690 |
+
"server_healthy": False,
|
| 691 |
+
"model_available": False,
|
| 692 |
+
"error": "Ollama URL not configured"
|
| 693 |
+
}
|
| 694 |
+
|
| 695 |
+
try:
|
| 696 |
+
response = requests.get(f"{self.base_url}/api/tags", timeout=10)
|
| 697 |
+
if response.status_code == 200:
|
| 698 |
+
models = response.json().get('models', [])
|
| 699 |
+
model_available = any(model['name'] == self.model for model in models)
|
| 700 |
+
|
| 701 |
+
return {
|
| 702 |
+
"server_healthy": True,
|
| 703 |
+
"model_available": model_available,
|
| 704 |
+
"available_models": [model['name'] for model in models],
|
| 705 |
+
"model_required": self.model
|
| 706 |
+
}
|
| 707 |
+
else:
|
| 708 |
+
return {
|
| 709 |
+
"server_healthy": False,
|
| 710 |
+
"model_available": False,
|
| 711 |
+
"error": f"Server returned {response.status_code}"
|
| 712 |
+
}
|
| 713 |
+
except Exception as e:
|
| 714 |
+
return {
|
| 715 |
+
"server_healthy": False,
|
| 716 |
+
"model_available": False,
|
| 717 |
+
"error": str(e)
|
| 718 |
+
}
|
| 719 |
+
|
| 720 |
+
def get_available_models(self):
|
| 721 |
+
"""Get list of available models"""
|
| 722 |
+
try:
|
| 723 |
+
response = requests.get(f"{self.base_url}/api/tags", timeout=10)
|
| 724 |
+
if response.status_code == 200:
|
| 725 |
+
return [model['name'] for model in response.json().get('models', [])]
|
| 726 |
+
return []
|
| 727 |
+
except:
|
| 728 |
+
return []
|
| 729 |
+
|
| 730 |
+
def get_queue_status(self):
|
| 731 |
+
"""Get current queue status"""
|
| 732 |
+
return {
|
| 733 |
+
"current_requests": self.current_requests,
|
| 734 |
+
"max_concurrent": self.max_concurrent,
|
| 735 |
+
"available_slots": max(0, self.max_concurrent - self.current_requests)
|
| 736 |
+
}
|
| 737 |
+
|
| 738 |
+
|
| 739 |
+
# Backward compatibility
|
| 740 |
+
class GroqGenerator(MultiGroqGenerator):
|
| 741 |
+
def __init__(self, model="llama-3.3-70b-versatile"):
|
| 742 |
+
super().__init__()
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
class ModelManager:
|
| 746 |
+
"""Unified model manager that handles both Groq and Phi-3 models"""
|
| 747 |
+
|
| 748 |
+
def __init__(self):
|
| 749 |
+
self.groq_generator = MultiGroqGenerator()
|
| 750 |
+
self.phi3_generator = HFGenerator()
|
| 751 |
+
|
| 752 |
+
def generate(self, prompt: str, model_choice: str = "phi3", **kwargs) -> str:
|
| 753 |
+
"""Generate content using selected model"""
|
| 754 |
+
logger.info(f"🎯 Using model: {model_choice}")
|
| 755 |
+
|
| 756 |
+
if model_choice == "phi3":
|
| 757 |
+
# Handle Phi-3 generation
|
| 758 |
+
user_type = kwargs.get('user_type', 'student')
|
| 759 |
+
academic_level = kwargs.get('student_level', 'undergraduate')
|
| 760 |
+
content_type = kwargs.get('content_type', 'simplified_explanation')
|
| 761 |
+
|
| 762 |
+
result = self.phi3_generator.generate(prompt, user_type, academic_level, content_type)
|
| 763 |
+
return result
|
| 764 |
+
else:
|
| 765 |
+
# Use Groq for comparison - check if this is a large content request
|
| 766 |
+
is_large_content = len(prompt) > 8000
|
| 767 |
+
|
| 768 |
+
if is_large_content:
|
| 769 |
+
return self.groq_generator.generate_large_content(prompt)
|
| 770 |
+
else:
|
| 771 |
+
return self.groq_generator.generate(prompt)
|
| 772 |
+
|
| 773 |
+
def get_service_status(self) -> dict:
|
| 774 |
+
"""Get clean research-focused status"""
|
| 775 |
+
groq_status = self.groq_generator.get_service_status()
|
| 776 |
+
phi3_health = self.phi3_generator.health_check()
|
| 777 |
+
|
| 778 |
+
# Clean Groq status
|
| 779 |
+
clean_groq_status = {
|
| 780 |
+
'healthy_providers': groq_status['healthy_providers'],
|
| 781 |
+
'total_providers': groq_status['total_providers'],
|
| 782 |
+
'providers': [
|
| 783 |
+
{
|
| 784 |
+
'name': provider['name'],
|
| 785 |
+
'failures': provider['failures']
|
| 786 |
+
}
|
| 787 |
+
for provider in groq_status['providers']
|
| 788 |
+
]
|
| 789 |
+
}
|
| 790 |
+
|
| 791 |
+
# Enhanced Phi-3 status
|
| 792 |
+
enhanced_phi3_status = {
|
| 793 |
+
'server_healthy': phi3_health['server_healthy'],
|
| 794 |
+
'model_available': phi3_health['model_available'],
|
| 795 |
+
'available_models': phi3_health['available_models'],
|
| 796 |
+
'model_required': phi3_health['model_required']
|
| 797 |
+
}
|
| 798 |
+
|
| 799 |
+
return {
|
| 800 |
+
"groq": clean_groq_status,
|
| 801 |
+
"phi3": enhanced_phi3_status
|
| 802 |
+
}
|
| 803 |
+
|
| 804 |
+
|
| 805 |
+
# Global model manager instance
|
| 806 |
+
model_manager = ModelManager()
|
| 807 |
+
|
| 808 |
+
|
| 809 |
+
# Setup function for your Streamlit app
|
| 810 |
+
def setup_generators():
|
| 811 |
+
"""Setup both generators with health checks"""
|
| 812 |
+
logger.info("🔧 Setting up generators...")
|
| 813 |
+
|
| 814 |
+
groq_generator = MultiGroqGenerator()
|
| 815 |
+
|
| 816 |
+
phi3_generator = HFGenerator()
|
| 817 |
+
phi3_health = phi3_generator.health_check()
|
| 818 |
+
|
| 819 |
+
logger.info(f"🏥 Phi-3 Health: {phi3_health}")
|
| 820 |
+
|
| 821 |
+
if not phi3_health["server_healthy"]:
|
| 822 |
+
logger.error("❌ Phi-3 server is not accessible")
|
| 823 |
+
elif not phi3_health["model_available"]:
|
| 824 |
+
logger.info("🔄 Phi-3 model needs to be pulled on first use")
|
| 825 |
+
|
| 826 |
+
return {
|
| 827 |
+
"groq": groq_generator,
|
| 828 |
+
"phi3": phi3_generator
|
| 829 |
+
}
|
| 830 |
+
|
| 831 |
+
|
| 832 |
+
# Test function
|
| 833 |
+
def test_generators():
|
| 834 |
+
"""Test both generators"""
|
| 835 |
+
logger.info("🧪 Testing Generators...")
|
| 836 |
+
|
| 837 |
+
generators = setup_generators()
|
| 838 |
+
|
| 839 |
+
# Test Groq
|
| 840 |
+
logger.info("🔷 Testing Groq...")
|
| 841 |
+
groq_result = generators["groq"].generate("Explain photosynthesis briefly")
|
| 842 |
+
if not groq_result.startswith("["):
|
| 843 |
+
logger.info("✅ Groq working")
|
| 844 |
+
else:
|
| 845 |
+
logger.error(f"❌ Groq failed: {groq_result}")
|
| 846 |
+
|
| 847 |
+
# Test Phi-3
|
| 848 |
+
logger.info("🔶 Testing Phi-3...")
|
| 849 |
+
phi3_result = generators["phi3"].generate("Explain photosynthesis briefly")
|
| 850 |
+
if "❌ Phi-3 Error:" not in phi3_result:
|
| 851 |
+
logger.info("✅ Phi-3 working")
|
| 852 |
+
else:
|
| 853 |
+
logger.error(f"❌ Phi-3 failed: {phi3_result}")
|
| 854 |
+
|
| 855 |
+
# Test health
|
| 856 |
+
logger.info("🏥 Health Check:")
|
| 857 |
+
logger.info(f"Groq providers: {len(generators['groq'].providers)}")
|
| 858 |
+
logger.info(f"Phi-3 healthy: {generators['phi3'].health_check()}")
|
| 859 |
+
|
| 860 |
+
|
| 861 |
+
if __name__ == "__main__":
|
| 862 |
+
test_generators()
|
| 863 |
+
|
| 864 |
+
# import os
|
| 865 |
+
# import time
|
| 866 |
+
# import random
|
| 867 |
+
# import requests
|
| 868 |
+
# from openai import OpenAI
|
| 869 |
+
# from dotenv import load_dotenv
|
| 870 |
+
# from typing import Dict, List
|
| 871 |
+
|
| 872 |
+
# # Load environment variables once at module level
|
| 873 |
+
# load_dotenv()
|
| 874 |
+
|
| 875 |
+
# class MultiGroqGenerator:
|
| 876 |
+
# def __init__(self):
|
| 877 |
+
# self.providers = self._initialize_groq_providers()
|
| 878 |
+
# self.models = self._get_best_models()
|
| 879 |
+
# self.max_retries = 3
|
| 880 |
+
# self.retry_delay = 2 # seconds
|
| 881 |
+
|
| 882 |
+
# def _initialize_groq_providers(self):
|
| 883 |
+
# """Initialize multiple Groq API providers with different keys"""
|
| 884 |
+
# providers = []
|
| 885 |
+
|
| 886 |
+
# # Get all Groq API keys from environment
|
| 887 |
+
# groq_keys = [
|
| 888 |
+
# os.getenv("GROQ_API_KEY_1"),
|
| 889 |
+
# os.getenv("GROQ_API_KEY_2"),
|
| 890 |
+
# ]
|
| 891 |
+
|
| 892 |
+
# # Filter out None values and create providers
|
| 893 |
+
# for i, key in enumerate(groq_keys):
|
| 894 |
+
# if key and key.strip():
|
| 895 |
+
# providers.append({
|
| 896 |
+
# 'name': f'Groq-{i+1}',
|
| 897 |
+
# 'client': OpenAI(
|
| 898 |
+
# api_key=key.strip(),
|
| 899 |
+
# base_url="https://api.groq.com/openai/v1"
|
| 900 |
+
# ),
|
| 901 |
+
# 'weight': 10,
|
| 902 |
+
# 'fail_count': 0,
|
| 903 |
+
# 'last_used': 0
|
| 904 |
+
# })
|
| 905 |
+
|
| 906 |
+
# if not providers:
|
| 907 |
+
# raise ValueError("No Groq API keys found. Please set GROQ_API_KEY_1, GROQ_API_KEY_2, etc.")
|
| 908 |
+
|
| 909 |
+
# print(f"✅ Initialized {len(providers)} Groq providers")
|
| 910 |
+
# return providers
|
| 911 |
+
|
| 912 |
+
# def _get_best_models(self):
|
| 913 |
+
# """Select optimal models for educational content"""
|
| 914 |
+
# return [
|
| 915 |
+
# {
|
| 916 |
+
# 'id': 'llama-3.3-70b-versatile',
|
| 917 |
+
# 'name': 'Llama 3.3 70B',
|
| 918 |
+
# 'weight': 10,
|
| 919 |
+
# 'max_tokens': 32768,
|
| 920 |
+
# 'description': 'Best for complex explanations'
|
| 921 |
+
# },
|
| 922 |
+
# {
|
| 923 |
+
# 'id': 'meta-llama/llama-4-maverick-17b-128e-instruct',
|
| 924 |
+
# 'name': 'Llama 4 Maverick 17B',
|
| 925 |
+
# 'weight': 9,
|
| 926 |
+
# 'max_tokens': 128000,
|
| 927 |
+
# 'description': 'Large context for big documents'
|
| 928 |
+
# },
|
| 929 |
+
# {
|
| 930 |
+
# 'id': 'llama-3.1-8b-instant',
|
| 931 |
+
# 'name': 'Llama 3.1 8B Instant',
|
| 932 |
+
# 'weight': 8,
|
| 933 |
+
# 'max_tokens': 32768,
|
| 934 |
+
# 'description': 'Fast for most content'
|
| 935 |
+
# },
|
| 936 |
+
# ]
|
| 937 |
+
|
| 938 |
+
# def _select_provider(self):
|
| 939 |
+
# """Select provider based on weight and fail history"""
|
| 940 |
+
# available_providers = [
|
| 941 |
+
# p for p in self.providers
|
| 942 |
+
# if p['fail_count'] < 3 and (time.time() - p['last_used']) > 30
|
| 943 |
+
# ]
|
| 944 |
+
|
| 945 |
+
# if not available_providers:
|
| 946 |
+
# available_providers = self.providers
|
| 947 |
+
# for p in available_providers:
|
| 948 |
+
# p['fail_count'] = max(0, p['fail_count'] - 1)
|
| 949 |
+
|
| 950 |
+
# weights = [p['weight'] for p in available_providers]
|
| 951 |
+
# selected = random.choices(available_providers, weights=weights, k=1)[0]
|
| 952 |
+
# selected['last_used'] = time.time()
|
| 953 |
+
# return selected
|
| 954 |
+
|
| 955 |
+
# def _select_model(self, prompt_length: int):
|
| 956 |
+
# """Select optimal model based on prompt size"""
|
| 957 |
+
# approx_tokens = prompt_length // 4
|
| 958 |
+
|
| 959 |
+
# if approx_tokens > 20000:
|
| 960 |
+
# return self.models[1] # Maverick for huge docs
|
| 961 |
+
# elif approx_tokens > 10000:
|
| 962 |
+
# return self.models[1] # Maverick for large docs
|
| 963 |
+
# elif approx_tokens > 6000:
|
| 964 |
+
# return self.models[0] # 70B for medium-large
|
| 965 |
+
# elif approx_tokens > 3000:
|
| 966 |
+
# return self.models[0] # 70B for quality
|
| 967 |
+
# else:
|
| 968 |
+
# return self.models[2] # 8B for speed
|
| 969 |
+
|
| 970 |
+
# def generate(self, prompt: str) -> str:
|
| 971 |
+
# """Generate content with automatic failover"""
|
| 972 |
+
# last_error = None
|
| 973 |
+
# prompt_length = len(prompt)
|
| 974 |
+
|
| 975 |
+
# for attempt in range(self.max_retries + 1):
|
| 976 |
+
# provider = self._select_provider()
|
| 977 |
+
# model = self._select_model(prompt_length)
|
| 978 |
+
|
| 979 |
+
# try:
|
| 980 |
+
# print(f"🔄 Attempt {attempt + 1} with {provider['name']} using {model['name']}...")
|
| 981 |
+
|
| 982 |
+
# result = self._call_groq(provider, model, prompt)
|
| 983 |
+
|
| 984 |
+
# if result and not result.startswith(("[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "[ModelNotFound]")):
|
| 985 |
+
# print(f"✅ Success with {provider['name']} + {model['name']}")
|
| 986 |
+
# provider['weight'] = min(20, provider['weight'] + 1)
|
| 987 |
+
# provider['fail_count'] = max(0, provider['fail_count'] - 1)
|
| 988 |
+
# return result
|
| 989 |
+
# else:
|
| 990 |
+
# print(f"❌ Provider returned: {result}")
|
| 991 |
+
# if "[ModelNotFound]" in result:
|
| 992 |
+
# continue
|
| 993 |
+
|
| 994 |
+
# except Exception as e:
|
| 995 |
+
# last_error = str(e)
|
| 996 |
+
# print(f"❌ {provider['name']} + {model['name']} failed: {last_error}")
|
| 997 |
+
# provider['weight'] = max(1, provider['weight'] - 2)
|
| 998 |
+
# provider['fail_count'] += 1
|
| 999 |
+
|
| 1000 |
+
# if attempt < self.max_retries:
|
| 1001 |
+
# delay = self.retry_delay * (2 ** attempt)
|
| 1002 |
+
# print(f"⏰ Waiting {delay}s before retry...")
|
| 1003 |
+
# time.sleep(delay)
|
| 1004 |
+
|
| 1005 |
+
# return self._fallback_generate(prompt)
|
| 1006 |
+
|
| 1007 |
+
# def generate_large_content(self, prompt: str) -> str:
|
| 1008 |
+
# """Handle large content generation for Groq - compatibility method"""
|
| 1009 |
+
# print("🔷 Using Groq for large content generation...")
|
| 1010 |
+
|
| 1011 |
+
# # For Groq, we can handle large content directly due to large context windows
|
| 1012 |
+
# # Just use the normal generate method with optimized model selection
|
| 1013 |
+
# prompt_length = len(prompt)
|
| 1014 |
+
|
| 1015 |
+
# if prompt_length > 20000: # Very large prompt
|
| 1016 |
+
# print("📝 Large prompt detected, optimizing for Groq Maverick...")
|
| 1017 |
+
# # Temporarily prioritize Maverick for large contexts
|
| 1018 |
+
# original_models = self.models.copy()
|
| 1019 |
+
# self.models = [self.models[1]] # Maverick has 128K context
|
| 1020 |
+
# try:
|
| 1021 |
+
# result = self.generate(prompt)
|
| 1022 |
+
# return result
|
| 1023 |
+
# finally:
|
| 1024 |
+
# self.models = original_models # Restore original models
|
| 1025 |
+
# else:
|
| 1026 |
+
# # Use normal generation
|
| 1027 |
+
# return self.generate(prompt)
|
| 1028 |
+
|
| 1029 |
+
# def _fallback_generate(self, prompt: str) -> str:
|
| 1030 |
+
# """Fallback generation with simpler model selection"""
|
| 1031 |
+
# print("🔄 Trying fallback generation...")
|
| 1032 |
+
|
| 1033 |
+
# fallback_models = [self.models[2], self.models[0]]
|
| 1034 |
+
|
| 1035 |
+
# for model in fallback_models:
|
| 1036 |
+
# for provider in self.providers:
|
| 1037 |
+
# try:
|
| 1038 |
+
# print(f"🔄 Fallback with {provider['name']} using {model['name']}...")
|
| 1039 |
+
# result = self._call_groq(provider, model, prompt)
|
| 1040 |
+
|
| 1041 |
+
# if result and not result.startswith(("[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "[ModelNotFound]")):
|
| 1042 |
+
# print(f"✅ Fallback success with {provider['name']} + {model['name']}")
|
| 1043 |
+
# return result
|
| 1044 |
+
# except Exception as e:
|
| 1045 |
+
# print(f"❌ Fallback failed: {e}")
|
| 1046 |
+
# continue
|
| 1047 |
+
|
| 1048 |
+
# return self._get_user_friendly_error("All models failed")
|
| 1049 |
+
|
| 1050 |
+
# def _call_groq(self, provider, model, prompt: str) -> str:
|
| 1051 |
+
# """Call Groq API with specific provider and model"""
|
| 1052 |
+
# try:
|
| 1053 |
+
# prompt_tokens_approx = len(prompt) // 4
|
| 1054 |
+
# available_tokens = model['max_tokens'] - prompt_tokens_approx - 500
|
| 1055 |
+
# max_response_tokens = max(1000, min(8000, available_tokens))
|
| 1056 |
+
|
| 1057 |
+
# response = provider['client'].chat.completions.create(
|
| 1058 |
+
# model=model['id'],
|
| 1059 |
+
# messages=[{"role": "user", "content": prompt}],
|
| 1060 |
+
# temperature=0.7,
|
| 1061 |
+
# max_tokens=max_response_tokens,
|
| 1062 |
+
# top_p=0.9
|
| 1063 |
+
# )
|
| 1064 |
+
|
| 1065 |
+
# if (response and response.choices and len(response.choices) > 0 and
|
| 1066 |
+
# response.choices[0].message and response.choices[0].message.content):
|
| 1067 |
+
|
| 1068 |
+
# content = response.choices[0].message.content.strip()
|
| 1069 |
+
# return content if content else "[Empty] No content generated"
|
| 1070 |
+
# else:
|
| 1071 |
+
# return "[Empty] Invalid response structure"
|
| 1072 |
+
|
| 1073 |
+
# except Exception as e:
|
| 1074 |
+
# error_msg = str(e).lower()
|
| 1075 |
+
|
| 1076 |
+
# if "rate limit" in error_msg or "429" in error_msg:
|
| 1077 |
+
# return f"[RateLimit] {provider['name']} rate limit exceeded"
|
| 1078 |
+
# elif "quota" in error_msg:
|
| 1079 |
+
# return f"[Quota] {provider['name']} quota exceeded"
|
| 1080 |
+
# elif "authentication" in error_msg:
|
| 1081 |
+
# return f"[Auth] {provider['name']} authentication failed"
|
| 1082 |
+
# elif "context length" in error_msg:
|
| 1083 |
+
# return f"[Length] {provider['name']} content too long"
|
| 1084 |
+
# elif "model not found" in error_msg:
|
| 1085 |
+
# return f"[ModelNotFound] {provider['name']}: {str(e)}"
|
| 1086 |
+
# else:
|
| 1087 |
+
# return f"[Error] {provider['name']}: {str(e)}"
|
| 1088 |
+
|
| 1089 |
+
# def _get_user_friendly_error(self, technical_error: str) -> str:
|
| 1090 |
+
# """Convert technical errors to user-friendly messages"""
|
| 1091 |
+
# error_lower = technical_error.lower()
|
| 1092 |
+
|
| 1093 |
+
# if "rate limit" in error_lower:
|
| 1094 |
+
# return "🚫 **Service Busy** - Please wait a few minutes and try again"
|
| 1095 |
+
# elif "quota" in error_lower:
|
| 1096 |
+
# return "📊 **Daily Limit Reached** - Try again tomorrow"
|
| 1097 |
+
# elif "length" in error_lower:
|
| 1098 |
+
# return "📝 **Content Too Large** - Please break into smaller sections"
|
| 1099 |
+
# else:
|
| 1100 |
+
# return "❌ **Temporary Issue** - Please try again shortly"
|
| 1101 |
+
|
| 1102 |
+
# def get_service_status(self) -> dict:
|
| 1103 |
+
# """Get current status of all providers"""
|
| 1104 |
+
# status = {
|
| 1105 |
+
# 'total_providers': len(self.providers),
|
| 1106 |
+
# 'healthy_providers': len([p for p in self.providers if p['fail_count'] < 2]),
|
| 1107 |
+
# 'providers': [],
|
| 1108 |
+
# 'models': [m['name'] for m in self.models]
|
| 1109 |
+
# }
|
| 1110 |
+
|
| 1111 |
+
# for provider in self.providers:
|
| 1112 |
+
# if provider['fail_count'] >= 3:
|
| 1113 |
+
# status_text = "🔴 Limited"
|
| 1114 |
+
# elif provider['fail_count'] >= 1:
|
| 1115 |
+
# status_text = "🟡 Slow"
|
| 1116 |
+
# else:
|
| 1117 |
+
# status_text = "🟢 Good"
|
| 1118 |
+
|
| 1119 |
+
# status['providers'].append({
|
| 1120 |
+
# 'name': provider['name'],
|
| 1121 |
+
# 'status': status_text,
|
| 1122 |
+
# 'failures': provider['fail_count']
|
| 1123 |
+
# })
|
| 1124 |
+
|
| 1125 |
+
# return status
|
| 1126 |
+
|
| 1127 |
+
|
| 1128 |
+
# class HFGenerator:
|
| 1129 |
+
# """Phi-3 Generator with Auto-Pull, Smart Chunking, and Context Preservation"""
|
| 1130 |
+
|
| 1131 |
+
# def __init__(self, base_url: str = None):
|
| 1132 |
+
# # Use environment variable as default if no base_url provided
|
| 1133 |
+
# self.base_url = base_url or os.getenv("MODEL_URL")
|
| 1134 |
+
# self.model = "phi3:mini"
|
| 1135 |
+
# self.current_requests = 0
|
| 1136 |
+
# self.max_concurrent = 2
|
| 1137 |
+
# self.model_available = False
|
| 1138 |
+
# self._ensure_model_available()
|
| 1139 |
+
|
| 1140 |
+
# def _ensure_model_available(self):
|
| 1141 |
+
# """Check if model is available and pull if needed"""
|
| 1142 |
+
# try:
|
| 1143 |
+
# response = requests.get(f"{self.base_url}/api/tags", timeout=10)
|
| 1144 |
+
# if response.status_code == 200:
|
| 1145 |
+
# models = response.json().get('models', [])
|
| 1146 |
+
# self.model_available = any(model['name'] == self.model for model in models)
|
| 1147 |
+
|
| 1148 |
+
# if not self.model_available:
|
| 1149 |
+
# print(f"🔄 Model {self.model} not found, pulling...")
|
| 1150 |
+
# self._pull_model()
|
| 1151 |
+
# else:
|
| 1152 |
+
# print(f"✅ Model {self.model} is available")
|
| 1153 |
+
# else:
|
| 1154 |
+
# print(f"❌ Could not check models: {response.status_code}")
|
| 1155 |
+
# except Exception as e:
|
| 1156 |
+
# print(f"❌ Error checking models: {e}")
|
| 1157 |
+
|
| 1158 |
+
# def _pull_model(self):
|
| 1159 |
+
# """Pull the Phi-3 model if not available"""
|
| 1160 |
+
# try:
|
| 1161 |
+
# print(f"📥 Pulling {self.model}... This may take a few minutes.")
|
| 1162 |
+
|
| 1163 |
+
# payload = {"name": self.model}
|
| 1164 |
+
# response = requests.post(
|
| 1165 |
+
# f"{self.base_url}/api/pull",
|
| 1166 |
+
# json=payload,
|
| 1167 |
+
# timeout=300 # 5 minute timeout for pull
|
| 1168 |
+
# )
|
| 1169 |
+
|
| 1170 |
+
# if response.status_code == 200:
|
| 1171 |
+
# print(f"✅ Successfully pulled {self.model}")
|
| 1172 |
+
# self.model_available = True
|
| 1173 |
+
# return True
|
| 1174 |
+
# else:
|
| 1175 |
+
# print(f"❌ Failed to pull model: {response.text}")
|
| 1176 |
+
# return False
|
| 1177 |
+
|
| 1178 |
+
# except Exception as e:
|
| 1179 |
+
# print(f"❌ Error pulling model: {e}")
|
| 1180 |
+
# return False
|
| 1181 |
+
|
| 1182 |
+
# def _estimate_tokens(self, text: str) -> int:
|
| 1183 |
+
# """Rough token estimation"""
|
| 1184 |
+
# return len(text) // 4
|
| 1185 |
+
|
| 1186 |
+
# def _chunk_content(self, content: str, max_tokens: int = 2500) -> list:
|
| 1187 |
+
# """Split large content into manageable chunks"""
|
| 1188 |
+
# paragraphs = content.split('\n\n')
|
| 1189 |
+
# chunks = []
|
| 1190 |
+
# current_chunk = ""
|
| 1191 |
+
# current_tokens = 0
|
| 1192 |
+
|
| 1193 |
+
# for paragraph in paragraphs:
|
| 1194 |
+
# para_tokens = self._estimate_tokens(paragraph)
|
| 1195 |
+
|
| 1196 |
+
# if para_tokens > max_tokens:
|
| 1197 |
+
# sentences = paragraph.split('. ')
|
| 1198 |
+
# for sentence in sentences:
|
| 1199 |
+
# sent_tokens = self._estimate_tokens(sentence)
|
| 1200 |
+
# if current_tokens + sent_tokens > max_tokens:
|
| 1201 |
+
# if current_chunk:
|
| 1202 |
+
# chunks.append(current_chunk.strip())
|
| 1203 |
+
# current_chunk = sentence
|
| 1204 |
+
# current_tokens = sent_tokens
|
| 1205 |
+
# else:
|
| 1206 |
+
# current_chunk += " " + sentence
|
| 1207 |
+
# current_tokens += sent_tokens
|
| 1208 |
+
# else:
|
| 1209 |
+
# if current_tokens + para_tokens > max_tokens:
|
| 1210 |
+
# if current_chunk:
|
| 1211 |
+
# chunks.append(current_chunk.strip())
|
| 1212 |
+
# current_chunk = paragraph
|
| 1213 |
+
# current_tokens = para_tokens
|
| 1214 |
+
# else:
|
| 1215 |
+
# current_chunk += "\n\n" + paragraph
|
| 1216 |
+
# current_tokens += para_tokens
|
| 1217 |
+
|
| 1218 |
+
# if current_chunk:
|
| 1219 |
+
# chunks.append(current_chunk.strip())
|
| 1220 |
+
|
| 1221 |
+
# return chunks
|
| 1222 |
+
|
| 1223 |
+
# def _create_context_summary(self, previous_chunks: list) -> str:
|
| 1224 |
+
# """Create a context summary from previous chunks"""
|
| 1225 |
+
# if not previous_chunks:
|
| 1226 |
+
# return ""
|
| 1227 |
+
|
| 1228 |
+
# context_prompt = f"""
|
| 1229 |
+
# Here's a summary of previous sections:
|
| 1230 |
+
# {chr(10).join(previous_chunks)}
|
| 1231 |
+
|
| 1232 |
+
# Provide a brief summary (2-3 sentences) of key points to help understand the next section.
|
| 1233 |
+
# """
|
| 1234 |
+
|
| 1235 |
+
# try:
|
| 1236 |
+
# payload = {
|
| 1237 |
+
# "model": self.model,
|
| 1238 |
+
# "messages": [{"role": "user", "content": context_prompt}],
|
| 1239 |
+
# "stream": False,
|
| 1240 |
+
# "options": {
|
| 1241 |
+
# "temperature": 0.3,
|
| 1242 |
+
# "top_p": 0.8,
|
| 1243 |
+
# "num_predict": 200
|
| 1244 |
+
# }
|
| 1245 |
+
# }
|
| 1246 |
+
|
| 1247 |
+
# response = requests.post(f"{self.base_url}/api/chat", json=payload, timeout=30)
|
| 1248 |
+
# if response.status_code == 200:
|
| 1249 |
+
# return response.json()['message']['content'].strip()
|
| 1250 |
+
# return f"Previous sections covered: {', '.join(previous_chunks[:2])}..."
|
| 1251 |
+
# except Exception:
|
| 1252 |
+
# return f"Context from {len(previous_chunks)} previous sections"
|
| 1253 |
+
|
| 1254 |
+
# def _create_chunk_summary(self, content: str) -> str:
|
| 1255 |
+
# """Create a very brief summary of a chunk's content"""
|
| 1256 |
+
# try:
|
| 1257 |
+
# payload = {
|
| 1258 |
+
# "model": self.model,
|
| 1259 |
+
# "messages": [{"role": "user", "content": f"Summarize key points in 1-2 sentences: {content}"}],
|
| 1260 |
+
# "stream": False,
|
| 1261 |
+
# "options": {
|
| 1262 |
+
# "temperature": 0.3,
|
| 1263 |
+
# "top_p": 0.8,
|
| 1264 |
+
# "num_predict": 100
|
| 1265 |
+
# }
|
| 1266 |
+
# }
|
| 1267 |
+
|
| 1268 |
+
# response = requests.post(f"{self.base_url}/api/chat", json=payload, timeout=20)
|
| 1269 |
+
# if response.status_code == 200:
|
| 1270 |
+
# return response.json()['message']['content'].strip()
|
| 1271 |
+
# return content[:100] + "..."
|
| 1272 |
+
# except:
|
| 1273 |
+
# return content[:100] + "..."
|
| 1274 |
+
|
| 1275 |
+
# def _call_ollama_with_retry(self, payload: dict, max_retries: int = 2) -> Dict:
|
| 1276 |
+
# """Call Ollama API with auto-pull retry"""
|
| 1277 |
+
# for attempt in range(max_retries + 1):
|
| 1278 |
+
# try:
|
| 1279 |
+
# response = requests.post(
|
| 1280 |
+
# f"{self.base_url}/api/chat",
|
| 1281 |
+
# json=payload,
|
| 1282 |
+
# timeout=60
|
| 1283 |
+
# )
|
| 1284 |
+
|
| 1285 |
+
# if response.status_code == 200:
|
| 1286 |
+
# return {"success": True, "data": response.json()}
|
| 1287 |
+
# elif response.status_code == 404 and "not found" in response.text.lower():
|
| 1288 |
+
# print(f"🔄 Model not found, attempting to pull... (attempt {attempt + 1})")
|
| 1289 |
+
# if self._pull_model():
|
| 1290 |
+
# continue # Retry after successful pull
|
| 1291 |
+
# else:
|
| 1292 |
+
# return {"success": False, "error": "Failed to pull model"}
|
| 1293 |
+
# else:
|
| 1294 |
+
# return {"success": False, "error": f"API error {response.status_code}: {response.text}"}
|
| 1295 |
+
|
| 1296 |
+
# except requests.exceptions.Timeout:
|
| 1297 |
+
# if attempt < max_retries:
|
| 1298 |
+
# print(f"⏰ Timeout, retrying... (attempt {attempt + 1})")
|
| 1299 |
+
# time.sleep(2)
|
| 1300 |
+
# else:
|
| 1301 |
+
# return {"success": False, "error": "Request timeout"}
|
| 1302 |
+
# except Exception as e:
|
| 1303 |
+
# return {"success": False, "error": f"Connection failed: {str(e)}"}
|
| 1304 |
+
|
| 1305 |
+
# return {"success": False, "error": "All retries failed"}
|
| 1306 |
+
|
| 1307 |
+
# def generate(self, prompt: str, user_type: str = "student",
|
| 1308 |
+
# academic_level: str = "undergraduate",
|
| 1309 |
+
# content_type: str = "simplified_explanation") -> str:
|
| 1310 |
+
# """Generate educational content with auto-pull and smart features - FIXED to return string"""
|
| 1311 |
+
|
| 1312 |
+
# # Check if we need to pull model first
|
| 1313 |
+
# if not self.model_available:
|
| 1314 |
+
# print("🔄 Model not available, pulling before generation...")
|
| 1315 |
+
# if not self._pull_model():
|
| 1316 |
+
# return f"❌ Phi-3 Error: Phi-3 model is not available and failed to pull. Please check the Ollama server."
|
| 1317 |
+
|
| 1318 |
+
# estimated_tokens = self._estimate_tokens(prompt)
|
| 1319 |
+
|
| 1320 |
+
# # Auto-detect large documents and use chunking
|
| 1321 |
+
# if estimated_tokens > 3000:
|
| 1322 |
+
# result = self.generate_large_content_with_context(prompt, user_type, academic_level, content_type)
|
| 1323 |
+
# if isinstance(result, dict):
|
| 1324 |
+
# return result.get("content", f"❌ Phi-3 Error: {result.get('error', 'Unknown error')}")
|
| 1325 |
+
# return result
|
| 1326 |
+
|
| 1327 |
+
# # Queue management
|
| 1328 |
+
# if self.current_requests >= self.max_concurrent:
|
| 1329 |
+
# queue_position = self.current_requests - self.max_concurrent + 1
|
| 1330 |
+
# estimated_wait = queue_position * 7
|
| 1331 |
+
# return f"❌ Phi-3 Error: Service busy. You're #{queue_position} in queue (~{estimated_wait}s)"
|
| 1332 |
+
|
| 1333 |
+
# self.current_requests += 1
|
| 1334 |
+
# try:
|
| 1335 |
+
# # Use the prompt directly without adding instructional wrapper
|
| 1336 |
+
# # The prompts from tutor_flow and student_flow now tell it to generate content directly
|
| 1337 |
+
|
| 1338 |
+
# # FIXED: Increased token allocation for complete responses
|
| 1339 |
+
# if estimated_tokens > 2000:
|
| 1340 |
+
# max_output_tokens = 2000 # Increased from 500
|
| 1341 |
+
# elif estimated_tokens > 1000:
|
| 1342 |
+
# max_output_tokens = 2500 # Increased from 800
|
| 1343 |
+
# else:
|
| 1344 |
+
# max_output_tokens = 3000 # Increased from 1000
|
| 1345 |
+
|
| 1346 |
+
# payload = {
|
| 1347 |
+
# "model": self.model,
|
| 1348 |
+
# "messages": [{"role": "user", "content": prompt}],
|
| 1349 |
+
# "stream": False,
|
| 1350 |
+
# "options": {
|
| 1351 |
+
# "temperature": 0.7,
|
| 1352 |
+
# "top_p": 0.9,
|
| 1353 |
+
# "num_predict": max_output_tokens
|
| 1354 |
+
# }
|
| 1355 |
+
# }
|
| 1356 |
+
|
| 1357 |
+
# start_time = time.time()
|
| 1358 |
+
# result = self._call_ollama_with_retry(payload)
|
| 1359 |
+
# inference_time = time.time() - start_time
|
| 1360 |
+
|
| 1361 |
+
# if result["success"]:
|
| 1362 |
+
# data = result["data"]
|
| 1363 |
+
# content = data['message']['content'].strip()
|
| 1364 |
+
|
| 1365 |
+
# # Check if content was cut off and retry with more tokens if needed
|
| 1366 |
+
# if self._is_content_cut_off(content):
|
| 1367 |
+
# print("⚠️ Content appears cut off, retrying with more tokens...")
|
| 1368 |
+
# payload["options"]["num_predict"] = 4000 # Max tokens for Phi-3
|
| 1369 |
+
# retry_result = self._call_ollama_with_retry(payload)
|
| 1370 |
+
|
| 1371 |
+
# if retry_result["success"]:
|
| 1372 |
+
# data = retry_result["data"]
|
| 1373 |
+
# content = data['message']['content'].strip()
|
| 1374 |
+
|
| 1375 |
+
# return content
|
| 1376 |
+
# else:
|
| 1377 |
+
# return f"❌ Phi-3 Error: {result['error']}"
|
| 1378 |
+
|
| 1379 |
+
# except Exception as e:
|
| 1380 |
+
# return f"❌ Phi-3 Error: {str(e)}"
|
| 1381 |
+
# finally:
|
| 1382 |
+
# self.current_requests -= 1
|
| 1383 |
+
|
| 1384 |
+
# def _is_content_cut_off(self, content: str) -> bool:
|
| 1385 |
+
# """Check if content appears to be cut off mid-sentence"""
|
| 1386 |
+
# if not content or len(content.strip()) < 100:
|
| 1387 |
+
# return True
|
| 1388 |
+
|
| 1389 |
+
# # Check if it ends with proper punctuation
|
| 1390 |
+
# if content.strip().endswith(('.', '!', '?', '."', '!"', '?"')):
|
| 1391 |
+
# return False
|
| 1392 |
+
|
| 1393 |
+
# # Check if it ends with incomplete sentence markers
|
| 1394 |
+
# if any(content.strip().endswith(marker) for marker in [',', ';', ':', '-', '–', '—']):
|
| 1395 |
+
# return True
|
| 1396 |
+
|
| 1397 |
+
# # Check if it ends with an incomplete word or thought
|
| 1398 |
+
# last_paragraph = content.strip().split('\n')[-1]
|
| 1399 |
+
# if len(last_paragraph.split()) < 5: # Very short last paragraph
|
| 1400 |
+
# return True
|
| 1401 |
+
|
| 1402 |
+
# return False
|
| 1403 |
+
|
| 1404 |
+
# def generate_large_content_with_context(self, prompt: str, user_type: str = "student",
|
| 1405 |
+
# academic_level: str = "undergraduate",
|
| 1406 |
+
# content_type: str = "simplified_explanation") -> str:
|
| 1407 |
+
# """Handle large documents with context preservation - FIXED to return string"""
|
| 1408 |
+
|
| 1409 |
+
# estimated_tokens = self._estimate_tokens(prompt)
|
| 1410 |
+
|
| 1411 |
+
# if estimated_tokens <= 3000:
|
| 1412 |
+
# return self.generate(prompt, user_type, academic_level, content_type)
|
| 1413 |
+
|
| 1414 |
+
# chunks = self._chunk_content(prompt, max_tokens=2500)
|
| 1415 |
+
|
| 1416 |
+
# if len(chunks) > 6:
|
| 1417 |
+
# return f"❌ Phi-3 Error: Document too large ({estimated_tokens} tokens, {len(chunks)} chunks). Please use Groq or break into smaller sections."
|
| 1418 |
+
|
| 1419 |
+
# all_results = []
|
| 1420 |
+
# previous_summaries = []
|
| 1421 |
+
|
| 1422 |
+
# for i, chunk in enumerate(chunks):
|
| 1423 |
+
# print(f"🔄 Processing chunk {i+1}/{len(chunks)} with context...")
|
| 1424 |
+
|
| 1425 |
+
# context_summary = self._create_context_summary(previous_summaries)
|
| 1426 |
+
|
| 1427 |
+
# if context_summary:
|
| 1428 |
+
# chunk_prompt = f"""Part {i+1} of {len(chunks)} - Building on previous context:
|
| 1429 |
+
|
| 1430 |
+
# **PREVIOUS CONTEXT:**
|
| 1431 |
+
# {context_summary}
|
| 1432 |
+
|
| 1433 |
+
# **CURRENT SECTION:**
|
| 1434 |
+
# {chunk}
|
| 1435 |
+
|
| 1436 |
+
# Analyze this section while connecting to the overall context."""
|
| 1437 |
+
# else:
|
| 1438 |
+
# chunk_prompt = f"""Part {i+1} of {len(chunks)}:
|
| 1439 |
+
|
| 1440 |
+
# **CONTENT:**
|
| 1441 |
+
# {chunk}
|
| 1442 |
+
|
| 1443 |
+
# Please analyze this section."""
|
| 1444 |
+
|
| 1445 |
+
# chunk_result = self.generate(chunk_prompt, user_type, academic_level, content_type)
|
| 1446 |
+
|
| 1447 |
+
# if "❌ Phi-3 Error:" not in chunk_result:
|
| 1448 |
+
# chunk_summary = self._create_chunk_summary(chunk_result)
|
| 1449 |
+
# previous_summaries.append(chunk_summary)
|
| 1450 |
+
|
| 1451 |
+
# all_results.append({
|
| 1452 |
+
# "chunk_number": i+1,
|
| 1453 |
+
# "content": chunk_result,
|
| 1454 |
+
# "context_used": bool(context_summary)
|
| 1455 |
+
# })
|
| 1456 |
+
# else:
|
| 1457 |
+
# return f"❌ Phi-3 Error: Failed to process chunk {i+1}: {chunk_result}"
|
| 1458 |
+
|
| 1459 |
+
# if i < len(chunks) - 1:
|
| 1460 |
+
# time.sleep(1)
|
| 1461 |
+
|
| 1462 |
+
# # Combine results
|
| 1463 |
+
# combined_content = "\n\n".join([f"## Part {r['chunk_number']}\n{r['content']}" for r in all_results])
|
| 1464 |
+
|
| 1465 |
+
# return combined_content
|
| 1466 |
+
|
| 1467 |
+
# def health_check(self) -> Dict:
|
| 1468 |
+
# """Comprehensive health check"""
|
| 1469 |
+
# try:
|
| 1470 |
+
# response = requests.get(f"{self.base_url}/api/tags", timeout=10)
|
| 1471 |
+
# if response.status_code == 200:
|
| 1472 |
+
# models = response.json().get('models', [])
|
| 1473 |
+
# model_available = any(model['name'] == self.model for model in models)
|
| 1474 |
+
|
| 1475 |
+
# return {
|
| 1476 |
+
# "server_healthy": True,
|
| 1477 |
+
# "model_available": model_available,
|
| 1478 |
+
# "available_models": [model['name'] for model in models],
|
| 1479 |
+
# "model_required": self.model
|
| 1480 |
+
# }
|
| 1481 |
+
# else:
|
| 1482 |
+
# return {
|
| 1483 |
+
# "server_healthy": False,
|
| 1484 |
+
# "model_available": False,
|
| 1485 |
+
# "error": f"Server returned {response.status_code}"
|
| 1486 |
+
# }
|
| 1487 |
+
# except Exception as e:
|
| 1488 |
+
# return {
|
| 1489 |
+
# "server_healthy": False,
|
| 1490 |
+
# "model_available": False,
|
| 1491 |
+
# "error": str(e)
|
| 1492 |
+
# }
|
| 1493 |
+
|
| 1494 |
+
# def get_available_models(self):
|
| 1495 |
+
# """Get list of available models"""
|
| 1496 |
+
# try:
|
| 1497 |
+
# response = requests.get(f"{self.base_url}/api/tags", timeout=10)
|
| 1498 |
+
# if response.status_code == 200:
|
| 1499 |
+
# return [model['name'] for model in response.json().get('models', [])]
|
| 1500 |
+
# return []
|
| 1501 |
+
# except:
|
| 1502 |
+
# return []
|
| 1503 |
+
|
| 1504 |
+
# def get_queue_status(self):
|
| 1505 |
+
# """Get current queue status"""
|
| 1506 |
+
# return {
|
| 1507 |
+
# "current_requests": self.current_requests,
|
| 1508 |
+
# "max_concurrent": self.max_concurrent,
|
| 1509 |
+
# "available_slots": max(0, self.max_concurrent - self.current_requests)
|
| 1510 |
+
# }
|
| 1511 |
+
|
| 1512 |
+
|
| 1513 |
+
# # Backward compatibility
|
| 1514 |
+
# class GroqGenerator(MultiGroqGenerator):
|
| 1515 |
+
# def __init__(self, model="llama-3.3-70b-versatile"):
|
| 1516 |
+
# super().__init__()
|
| 1517 |
+
|
| 1518 |
+
|
| 1519 |
+
# class ModelManager:
|
| 1520 |
+
# """Unified model manager that handles both Groq and Phi-3 models"""
|
| 1521 |
+
|
| 1522 |
+
# def __init__(self):
|
| 1523 |
+
# self.groq_generator = MultiGroqGenerator()
|
| 1524 |
+
# self.phi3_generator = HFGenerator()
|
| 1525 |
+
|
| 1526 |
+
# def generate(self, prompt: str, model_choice: str = "phi3", **kwargs) -> str:
|
| 1527 |
+
# """Generate content using selected model"""
|
| 1528 |
+
# print(f"🎯 Using model: {model_choice}")
|
| 1529 |
+
|
| 1530 |
+
# if model_choice == "phi3":
|
| 1531 |
+
# # Handle Phi-3 generation - FIXED: Now returns string directly
|
| 1532 |
+
# user_type = kwargs.get('user_type', 'student')
|
| 1533 |
+
# academic_level = kwargs.get('student_level', 'undergraduate')
|
| 1534 |
+
# content_type = kwargs.get('content_type', 'simplified_explanation')
|
| 1535 |
+
|
| 1536 |
+
# result = self.phi3_generator.generate(prompt, user_type, academic_level, content_type)
|
| 1537 |
+
# return result
|
| 1538 |
+
# else:
|
| 1539 |
+
# # Use Groq for comparison - check if this is a large content request
|
| 1540 |
+
# is_large_content = len(prompt) > 8000 # You can adjust this threshold
|
| 1541 |
+
|
| 1542 |
+
# if is_large_content:
|
| 1543 |
+
# return self.groq_generator.generate_large_content(prompt)
|
| 1544 |
+
# else:
|
| 1545 |
+
# return self.groq_generator.generate(prompt)
|
| 1546 |
+
|
| 1547 |
+
# def get_service_status(self) -> dict:
|
| 1548 |
+
# """Get clean research-focused status"""
|
| 1549 |
+
# groq_status = self.groq_generator.get_service_status()
|
| 1550 |
+
# phi3_health = self.phi3_generator.health_check()
|
| 1551 |
+
|
| 1552 |
+
# # Clean Groq status - remove model names, focus on providers
|
| 1553 |
+
# clean_groq_status = {
|
| 1554 |
+
# 'healthy_providers': groq_status['healthy_providers'],
|
| 1555 |
+
# 'total_providers': groq_status['total_providers'],
|
| 1556 |
+
# 'providers': [
|
| 1557 |
+
# {
|
| 1558 |
+
# 'name': provider['name'],
|
| 1559 |
+
# 'failures': provider['failures']
|
| 1560 |
+
# }
|
| 1561 |
+
# for provider in groq_status['providers']
|
| 1562 |
+
# ]
|
| 1563 |
+
# }
|
| 1564 |
+
|
| 1565 |
+
# # Enhanced Phi-3 status
|
| 1566 |
+
# enhanced_phi3_status = {
|
| 1567 |
+
# 'server_healthy': phi3_health['server_healthy'],
|
| 1568 |
+
# 'model_available': phi3_health['model_available'],
|
| 1569 |
+
# 'available_models': phi3_health['available_models'],
|
| 1570 |
+
# 'model_required': phi3_health['model_required']
|
| 1571 |
+
# }
|
| 1572 |
+
|
| 1573 |
+
# return {
|
| 1574 |
+
# "groq": clean_groq_status,
|
| 1575 |
+
# "phi3": enhanced_phi3_status
|
| 1576 |
+
# }
|
| 1577 |
+
|
| 1578 |
+
|
| 1579 |
+
# # Global model manager instance
|
| 1580 |
+
# model_manager = ModelManager()
|
| 1581 |
+
|
| 1582 |
+
|
| 1583 |
+
# # Setup function for your Streamlit app
|
| 1584 |
+
# def setup_generators():
|
| 1585 |
+
# """Setup both generators with health checks"""
|
| 1586 |
+
# print("🔧 Setting up generators...")
|
| 1587 |
+
|
| 1588 |
+
# groq_generator = MultiGroqGenerator()
|
| 1589 |
+
|
| 1590 |
+
# phi3_generator = HFGenerator()
|
| 1591 |
+
# phi3_health = phi3_generator.health_check()
|
| 1592 |
+
|
| 1593 |
+
# print(f"🏥 Phi-3 Health: {phi3_health}")
|
| 1594 |
+
|
| 1595 |
+
# if not phi3_health["server_healthy"]:
|
| 1596 |
+
# print("❌ Phi-3 server is not accessible")
|
| 1597 |
+
# elif not phi3_health["model_available"]:
|
| 1598 |
+
# print("🔄 Phi-3 model needs to be pulled on first use")
|
| 1599 |
+
|
| 1600 |
+
# return {
|
| 1601 |
+
# "groq": groq_generator,
|
| 1602 |
+
# "phi3": phi3_generator
|
| 1603 |
+
# }
|
| 1604 |
+
|
| 1605 |
+
|
| 1606 |
+
# # Test function
|
| 1607 |
+
# def test_generators():
|
| 1608 |
+
# """Test both generators"""
|
| 1609 |
+
# print("🧪 Testing Generators...")
|
| 1610 |
+
|
| 1611 |
+
# generators = setup_generators()
|
| 1612 |
+
|
| 1613 |
+
# # Test Groq
|
| 1614 |
+
# print("\n🔷 Testing Groq...")
|
| 1615 |
+
# groq_result = generators["groq"].generate("Explain photosynthesis briefly")
|
| 1616 |
+
# if not groq_result.startswith("["):
|
| 1617 |
+
# print("✅ Groq working")
|
| 1618 |
+
# else:
|
| 1619 |
+
# print("❌ Groq failed:", groq_result)
|
| 1620 |
+
|
| 1621 |
+
# # Test Phi-3
|
| 1622 |
+
# print("\n🔶 Testing Phi-3...")
|
| 1623 |
+
# phi3_result = generators["phi3"].generate("Explain photosynthesis briefly")
|
| 1624 |
+
# if "❌ Phi-3 Error:" not in phi3_result:
|
| 1625 |
+
# print("✅ Phi-3 working")
|
| 1626 |
+
# else:
|
| 1627 |
+
# print("❌ Phi-3 failed:", phi3_result)
|
| 1628 |
+
|
| 1629 |
+
# # Test health
|
| 1630 |
+
# print("\n🏥 Health Check:")
|
| 1631 |
+
# print(f"Groq providers: {len(generators['groq'].providers)}")
|
| 1632 |
+
# print(f"Phi-3 healthy: {generators['phi3'].health_check()}")
|
| 1633 |
+
|
| 1634 |
+
|
| 1635 |
+
# if __name__ == "__main__":
|
| 1636 |
+
# test_generators()
|
simulate_adapt.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def adjust_prompt(original_prompt, complexity=None, clarity=None, depth=None, user_type=None, student_level=None, comments=""):
|
| 2 |
+
"""
|
| 3 |
+
Enhanced prompt adjustment based on user feedback
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
adjustments = []
|
| 7 |
+
new_prompt = original_prompt
|
| 8 |
+
|
| 9 |
+
# Priority 1: Complexity adjustments (most impactful)
|
| 10 |
+
if complexity == "Too complex":
|
| 11 |
+
adjustments.append("simplified language and added analogies")
|
| 12 |
+
if user_type == "student":
|
| 13 |
+
new_prompt = f"Explain this in simpler, more beginner-friendly terms with practical examples and everyday analogies: {original_prompt}"
|
| 14 |
+
else:
|
| 15 |
+
new_prompt = f"Create a more accessible version suitable for {student_level} students with clear examples: {original_prompt}"
|
| 16 |
+
|
| 17 |
+
elif complexity == "Too simple":
|
| 18 |
+
adjustments.append("added technical depth and advanced concepts")
|
| 19 |
+
new_prompt = f"Expand this with more technical details, deeper insights, and advanced applications while maintaining clarity: {original_prompt}"
|
| 20 |
+
|
| 21 |
+
# Priority 2: Use specific comments if available (most targeted)
|
| 22 |
+
elif comments and len(comments.strip()) > 10:
|
| 23 |
+
# Extract key requests from user comments
|
| 24 |
+
user_requests = extract_requests_from_comments(comments)
|
| 25 |
+
if user_requests:
|
| 26 |
+
adjustments.append(f"addressed: {', '.join(user_requests)}")
|
| 27 |
+
new_prompt = f"{original_prompt}. Specifically: {', '.join(user_requests)}"
|
| 28 |
+
|
| 29 |
+
# Priority 3: Clarity adjustments
|
| 30 |
+
elif clarity and clarity <= 2:
|
| 31 |
+
adjustments.append("improved structure and clarity")
|
| 32 |
+
new_prompt = f"Make this extremely clear and well-structured with step-by-step explanation and better organization: {original_prompt}"
|
| 33 |
+
|
| 34 |
+
# Priority 4: Depth adjustments
|
| 35 |
+
elif depth and depth <= 2:
|
| 36 |
+
adjustments.append("added foundational content")
|
| 37 |
+
new_prompt = f"Provide more basic foundation, introductory content, and build up gradually: {original_prompt}"
|
| 38 |
+
|
| 39 |
+
elif depth and depth >= 4:
|
| 40 |
+
adjustments.append("included advanced insights")
|
| 41 |
+
new_prompt = f"Include more advanced insights, real-world applications, case studies, and deeper analysis: {original_prompt}"
|
| 42 |
+
|
| 43 |
+
# Priority 5: General improvement fallback
|
| 44 |
+
elif complexity or clarity or depth:
|
| 45 |
+
adjustments.append("general improvements based on feedback")
|
| 46 |
+
new_prompt = f"Improve this content to be more effective for learning: {original_prompt}"
|
| 47 |
+
|
| 48 |
+
# Always add learning level context
|
| 49 |
+
if student_level and student_level != "Unknown":
|
| 50 |
+
if "suitable for" not in new_prompt and f"for {student_level}" not in new_prompt:
|
| 51 |
+
new_prompt = f"{new_prompt} - Tailor specifically for {student_level} level understanding"
|
| 52 |
+
|
| 53 |
+
print(f"🔄 Adaptation applied: {adjustments}")
|
| 54 |
+
return new_prompt
|
| 55 |
+
|
| 56 |
+
def extract_requests_from_comments(comments):
|
| 57 |
+
"""Extract specific requests from user comments"""
|
| 58 |
+
requests = []
|
| 59 |
+
comment_lower = comments.lower()
|
| 60 |
+
|
| 61 |
+
# Look for specific requests in comments
|
| 62 |
+
if any(word in comment_lower for word in ['example', 'examples']):
|
| 63 |
+
requests.append("more practical examples")
|
| 64 |
+
|
| 65 |
+
if any(word in comment_lower for word in ['confusing', 'unclear', 'hard to understand']):
|
| 66 |
+
requests.append("clearer explanations")
|
| 67 |
+
|
| 68 |
+
if any(word in comment_lower for word in ['analogy', 'metaphor', 'comparison']):
|
| 69 |
+
requests.append("better analogies")
|
| 70 |
+
|
| 71 |
+
if any(word in comment_lower for word in ['step by step', 'step-by-step', 'break down']):
|
| 72 |
+
requests.append("step-by-step breakdown")
|
| 73 |
+
|
| 74 |
+
if any(word in comment_lower for word in ['real world', 'real-world', 'practical']):
|
| 75 |
+
requests.append("real-world applications")
|
| 76 |
+
|
| 77 |
+
if any(word in comment_lower for word in ['visual', 'diagram', 'chart']):
|
| 78 |
+
requests.append("visual explanations")
|
| 79 |
+
|
| 80 |
+
return requests
|
| 81 |
+
|
| 82 |
+
def get_adaptation_explanation(complexity, clarity, depth, comments=""):
|
| 83 |
+
"""Generate a user-friendly explanation of what adaptations were made"""
|
| 84 |
+
explanations = []
|
| 85 |
+
|
| 86 |
+
# Use comments for most specific explanations
|
| 87 |
+
if comments and len(comments.strip()) > 10:
|
| 88 |
+
user_requests = extract_requests_from_comments(comments)
|
| 89 |
+
if user_requests:
|
| 90 |
+
explanations.append(f"• Addressed your specific requests: {', '.join(user_requests)}")
|
| 91 |
+
|
| 92 |
+
# Fall back to rating-based explanations
|
| 93 |
+
if not explanations:
|
| 94 |
+
if complexity == "Too complex":
|
| 95 |
+
explanations.append("• Simplified language and added everyday analogies")
|
| 96 |
+
elif complexity == "Too simple":
|
| 97 |
+
explanations.append("• Added more technical depth and advanced concepts")
|
| 98 |
+
|
| 99 |
+
if clarity and clarity <= 2:
|
| 100 |
+
explanations.append("• Improved structure with step-by-step explanations")
|
| 101 |
+
elif clarity and clarity >= 4:
|
| 102 |
+
explanations.append("• Maintained the clear structure you liked")
|
| 103 |
+
|
| 104 |
+
if depth and depth <= 2:
|
| 105 |
+
explanations.append("• Added more foundational content and basics")
|
| 106 |
+
elif depth and depth >= 4:
|
| 107 |
+
explanations.append("• Included advanced insights and applications")
|
| 108 |
+
|
| 109 |
+
# Final fallback
|
| 110 |
+
if not explanations:
|
| 111 |
+
if comments:
|
| 112 |
+
explanations.append("• Incorporated your detailed feedback")
|
| 113 |
+
else:
|
| 114 |
+
explanations.append("• Made general improvements based on your ratings")
|
| 115 |
+
|
| 116 |
+
return "\n".join(explanations)
|