import gradio as gr import torch from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask from mammal.keys import ( ENCODER_INPUTS_STR, ENCODER_INPUTS_TOKENS, ENCODER_INPUTS_ATTENTION_MASK, CLS_PRED, SCORES, ) from mammal.model import Mammal from mammal_demo.demo_framework import MammalObjectBroker, MammalTask class TcrTask(MammalTask): def __init__(self, model_dict): super().__init__(name="T-cell receptors-peptide binding specificity", model_dict=model_dict) self.description = "T-cell receptors-peptide binding specificity (TCR)" self.examples = { "tcr_beta_seq": "NAGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQDPGMGLRLIHYSVGAGITDQGEVPNGYNVSRSTTEDFPLRLLSAAPSQTSVYFCASSYSWDRVLEQYFGPGTRLTVT", "epitope_seq": "LLQTGIHVRVSQPSL", } self.markup_text = """ # Mammal based T-cell receptors-peptide binding specificity demonstration Given the TCR beta sequance and the epitope sequacne, estimate the binding specificity. """ def create_prompt(self,tcr_beta_seq, epitope_seq): prompt = ( "<@TOKENIZER-TYPE=AA>"+ f"<@TOKENIZER-TYPE=AA>{tcr_beta_seq}"+ f"<@TOKENIZER-TYPE=AA>{epitope_seq}" ) return prompt def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker): """convert sample_inputs to sample_dict including creating a proper prompt Args: sample_inputs (dict): dictionary containing the inputs to the model model_holder (MammalObjectBroker): model holder Returns: dict: sample_dict for feeding into model """ sample_dict= dict() sample_dict[ENCODER_INPUTS_STR] = self.create_prompt(*sample_inputs) tokenizer_op = model_holder.tokenizer_op model = model_holder.model tokenizer_op( sample_dict=sample_dict, key_in=ENCODER_INPUTS_STR, key_out_tokens_ids=ENCODER_INPUTS_TOKENS, key_out_attention_mask=ENCODER_INPUTS_ATTENTION_MASK, ) sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor( sample_dict[ENCODER_INPUTS_TOKENS], device=model.device ) sample_dict[ENCODER_INPUTS_ATTENTION_MASK] = torch.tensor( sample_dict[ENCODER_INPUTS_ATTENTION_MASK], device=model.device ) return sample_dict def run_model(self, sample_dict, model: Mammal): # Generate Prediction batch_dict = model.generate( [sample_dict], output_scores=True, return_dict_in_generate=True, max_new_tokens=5, ) return batch_dict @staticmethod def positive_token_id(tokenizer_op: ModularTokenizerOp): """token for positive binding Args: model (MammalTrainedModel): model holding tokenizer Returns: int: id of positive binding token """ return tokenizer_op.get_token_id("<1>") @staticmethod def negative_token_id(tokenizer_op: ModularTokenizerOp): """token for negative binding Args: model (MammalTrainedModel): model holding tokenizer Returns: int: id of negative binding token """ return tokenizer_op.get_token_id("<0>") def decode_output(self, batch_dict, tokenizer_op: ModularTokenizerOp)-> dict: """ Extract predicted class and scores """ # positive_token_id = self.positive_token_id(tokenizer_op) # negative_token_id = self.negative_token_id(tokenizer_op) negative_token_id = tokenizer_op.get_token_id("<0>") positive_token_id = tokenizer_op.get_token_id("<1>") label_id_to_int = { negative_token_id: 0, positive_token_id: 1, } classification_position = 1 decoder_output=batch_dict[CLS_PRED][0] decoder_output_scores=batch_dict[SCORES][0] if decoder_output_scores is not None: scores = decoder_output_scores[classification_position,positive_token_id] else: scores=[None] ans = dict( pred=label_id_to_int.get(int(decoder_output[classification_position]), -1), score=scores.item(), ) return ans def create_and_run_prompt(self, model_name, tcr_beta_seq, epitope_seq): model_holder = self.model_dict[model_name] inputs = { "tcr_beta_seq": tcr_beta_seq, "epitope_seq": epitope_seq, } sample_dict = self.crate_sample_dict( sample_inputs=inputs, model_holder=model_holder ) prompt = sample_dict[ENCODER_INPUTS_STR] batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model) res = prompt, *self.decode_output(batch_dict, tokenizer_op=model_holder.tokenizer_op) return res def create_demo(self, model_name_widget): with gr.Group() as demo: gr.Markdown(self.markup_text) with gr.Row(): tcr_textbox = gr.Textbox( label="T-cell receptor beta sequence", # info="standard", interactive=True, lines=3, value=self.examples["tcr_beta_seq"], ) epitope_textbox = gr.Textbox( label="Epitope sequace", # info="standard", interactive=True, lines=3, value=self.examples["epitope_seq"], ) with gr.Row(): run_mammal = gr.Button( "Run Mammal prompt for TCL-Epitope Interaction", variant="primary", ) with gr.Row(): prompt_box = gr.Textbox(label="Mammal prompt", lines=5) with gr.Row(): decoded = gr.Textbox(label="Mammal prediction") binding_score = gr.Number(label="Binding score") run_mammal.click( fn=self.create_and_run_prompt, inputs=[model_name_widget, tcr_textbox, epitope_textbox], outputs=[prompt_box, decoded, binding_score], ) demo.visible = False return demo