from sklearn.metrics import roc_auc_score, roc_curve import datetime import os import umap import numpy as np import matplotlib.pyplot as plt import pandas as pd import pickle import json from xgboost import XGBClassifier, XGBRegressor import xgboost as xgb from sklearn.metrics import roc_auc_score, mean_squared_error import xgboost as xgb from sklearn.svm import SVR from sklearn.linear_model import LinearRegression from sklearn.kernel_ridge import KernelRidge import json from sklearn.compose import TransformedTargetRegressor from sklearn.preprocessing import MinMaxScaler import torch from transformers import AutoTokenizer, AutoModel import sys sys.path.append("models/") from models.selfies_model.load import SELFIES as bart from models.mhg_model import load as mhg from models.smi_ted.smi_ted_light.load import load_smi_ted datasets = {} models = {} downstream_models ={} def avail_models_data(): global datasets global models datasets = [{"Dataset": "hiv", "Input": "smiles", "Output": "HIV_active", "Path": "data/hiv", "Timestamp": "2024-06-26 11:27:37"}, {"Dataset": "esol", "Input": "smiles", "Output": "ESOL predicted log solubility in mols per litre", "Path": "data/esol", "Timestamp": "2024-06-26 11:31:46"}, {"Dataset": "freesolv", "Input": "smiles", "Output": "expt", "Path": "data/freesolv", "Timestamp": "2024-06-26 11:33:47"}, {"Dataset": "lipo", "Input": "smiles", "Output": "y", "Path": "data/lipo", "Timestamp": "2024-06-26 11:34:37"}, {"Dataset": "bace", "Input": "smiles", "Output": "Class", "Path": "data/bace", "Timestamp": "2024-06-26 11:36:40"}, {"Dataset": "bbbp", "Input": "smiles", "Output": "p_np", "Path": "data/bbbp", "Timestamp": "2024-06-26 11:39:23"}, {"Dataset": "clintox", "Input": "smiles", "Output": "CT_TOX", "Path": "data/clintox", "Timestamp": "2024-06-26 11:42:43"}] models = [{"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality", "Timestamp": "2024-06-21 12:32:20"}, {"Name": "mol-xl","Model Name": "Molformer", "Description": "MolFormer model for string based SMILES modality", "Timestamp": "2024-06-21 12:35:56"}, {"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model", "Timestamp": "2024-07-10 00:09:42"}, {"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model", "Timestamp": "2024-07-10 00:09:42"}] def avail_models(raw=False): global models models = [{"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model"}, {"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality"}, {"Name": "mol-xl","Model Name": "Molformer", "Description": "MolFormer model for string based SMILES modality"}, {"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model"}, ] if raw: return models else: return pd.DataFrame(models).drop('Name', axis=1) return models def avail_downstream_models(): global downstream_models with open("downstream_models.json", "r") as outfile: downstream_models = json.load(outfile) return downstream_models def avail_datasets(): global datasets datasets = [{"Dataset": "hiv", "Input": "smiles", "Output": "HIV_active", "Path": "data/hiv", "Timestamp": "2024-06-26 11:27:37"}, {"Dataset": "esol", "Input": "smiles", "Output": "ESOL predicted log solubility in mols per litre", "Path": "data/esol", "Timestamp": "2024-06-26 11:31:46"}, {"Dataset": "freesolv", "Input": "smiles", "Output": "expt", "Path": "data/freesolv", "Timestamp": "2024-06-26 11:33:47"}, {"Dataset": "lipo", "Input": "smiles", "Output": "y", "Path": "data/lipo", "Timestamp": "2024-06-26 11:34:37"}, {"Dataset": "bace", "Input": "smiles", "Output": "Class", "Path": "data/bace", "Timestamp": "2024-06-26 11:36:40"}, {"Dataset": "bbbp", "Input": "smiles", "Output": "p_np", "Path": "data/bbbp", "Timestamp": "2024-06-26 11:39:23"}, {"Dataset": "clintox", "Input": "smiles", "Output": "CT_TOX", "Path": "data/clintox", "Timestamp": "2024-06-26 11:42:43"}] return datasets def reset(): """datasets = {"esol": ["smiles", "ESOL predicted log solubility in mols per litre", "data/esol", "2024-06-26 11:36:46.509324"], "freesolv": ["smiles", "expt", "data/freesolv", "2024-06-26 11:37:37.393273"], "lipo": ["smiles", "y", "data/lipo", "2024-06-26 11:37:37.393273"], "hiv": ["smiles", "HIV_active", "data/hiv", "2024-06-26 11:37:37.393273"], "bace": ["smiles", "Class", "data/bace", "2024-06-26 11:38:40.058354"], "bbbp": ["smiles", "p_np", "data/bbbp","2024-06-26 11:38:40.058354"], "clintox": ["smiles", "CT_TOX", "data/clintox","2024-06-26 11:38:40.058354"], "sider": ["smiles","1:", "data/sider","2024-06-26 11:38:40.058354"], "tox21": ["smiles",":-2", "data/tox21","2024-06-26 11:38:40.058354"] }""" datasets = [ {"Dataset": "hiv", "Input": "smiles", "Output": "HIV_active", "Path": "data/hiv", "Timestamp": "2024-06-26 11:27:37"}, {"Dataset": "esol", "Input": "smiles", "Output": "ESOL predicted log solubility in mols per litre", "Path": "data/esol", "Timestamp": "2024-06-26 11:31:46"}, {"Dataset": "freesolv", "Input": "smiles", "Output": "expt", "Path": "data/freesolv", "Timestamp": "2024-06-26 11:33:47"}, {"Dataset": "lipo", "Input": "smiles", "Output": "y", "Path": "data/lipo", "Timestamp": "2024-06-26 11:34:37"}, {"Dataset": "bace", "Input": "smiles", "Output": "Class", "Path": "data/bace", "Timestamp": "2024-06-26 11:36:40"}, {"Dataset": "bbbp", "Input": "smiles", "Output": "p_np", "Path": "data/bbbp", "Timestamp": "2024-06-26 11:39:23"}, {"Dataset": "clintox", "Input": "smiles", "Output": "CT_TOX", "Path": "data/clintox", "Timestamp": "2024-06-26 11:42:43"}, #{"Dataset": "sider", "Input": "smiles", "Output": "1:", "path": "data/sider", "Timestamp": "2024-06-26 11:38:40.058354"}, #{"Dataset": "tox21", "Input": "smiles", "Output": ":-2", "path": "data/tox21", "Timestamp": "2024-06-26 11:38:40.058354"} ] models = [{"Name": "bart", "Description": "BART model for string based SELFIES modality", "Timestamp": "2024-06-21 12:32:20"}, {"Name": "mol-xl", "Description": "MolFormer model for string based SMILES modality", "Timestamp": "2024-06-21 12:35:56"}, {"Name": "mhg", "Description": "MHG", "Timestamp": "2024-07-10 00:09:42"}, {"Name": "spec-gru", "Description": "Spectrum modality with GRU", "Timestamp": "2024-07-10 00:09:42"}, {"Name": "spec-lstm", "Description": "Spectrum modality with LSTM", "Timestamp": "2024-07-10 00:09:54"}, {"Name": "3d-vae", "Description": "VAE model for 3D atom positions", "Timestamp": "2024-07-10 00:10:08"}] downstream_models = [ {"Name": "XGBClassifier", "Description": "XG Boost Classifier", "Timestamp": "2024-06-21 12:31:20"}, {"Name": "XGBRegressor", "Description": "XG Boost Regressor", "Timestamp": "2024-06-21 12:32:56"}, {"Name": "2-FNN", "Description": "A two layer feedforward network", "Timestamp": "2024-06-24 14:34:16"}, {"Name": "3-FNN", "Description": "A three layer feedforward network", "Timestamp": "2024-06-24 14:38:37"}, ] with open("datasets.json", "w") as outfile: json.dump(datasets, outfile) with open("models.json", "w") as outfile: json.dump(models, outfile) with open("downstream_models.json", "w") as outfile: json.dump(downstream_models, outfile) def update_data_list(list_data): #datasets[list_data[0]] = list_data[1:] with open("datasets.json", "w") as outfile: json.dump(datasets, outfile) avail_models_data() def update_model_list(list_model): #models[list_model[0]] = list_model[1] with open("models.json", "w") as outfile: json.dump(list_model, outfile) avail_models_data() def update_downstream_model_list(list_model): #models[list_model[0]] = list_model[1] with open("downstream_models.json", "w") as outfile: json.dump(list_model, outfile) avail_models_data() avail_models_data() def list_models(): #print(*list(models.keys()),sep='\n') data = avail_models(raw=True) # Convert data to a pandas DataFrame df = pd.DataFrame(data) # Add a column for displaying row numbers starting from 1 df.index += 1 # Create dropdown widget for sorting sort_dropdown = widgets.Dropdown( options=['Name', 'Timestamp'], value='Name', description='Sort by:', disabled=False, ) # Output widget to display the table output = widgets.Output() # Define function to update display based on sorting def update_display(change): with output: output.clear_output(wait=True) sorted_df = df.sort_values(by=sort_dropdown.value) display(sorted_df.style.set_properties(**{ 'text-align': 'left', 'border': '1px solid #ddd', })) # Attach the update_display function to the dropdown widget sort_dropdown.observe(update_display, names='value') # Display the dropdown and the table initially display(sort_dropdown, output) update_display(None) def list_downstream_models(): #print(*list(models.keys()),sep='\n') data = avail_downstream_models() # Convert data to a pandas DataFrame df = pd.DataFrame(data) # Add a column for displaying row numbers starting from 1 df.index += 1 # Create dropdown widget for sorting sort_dropdown = widgets.Dropdown( options=['Name', 'Timestamp'], value='Timestamp', description='Sort by:', disabled=False, ) # Output widget to display the table output = widgets.Output() # Define function to update display based on sorting def update_display(change): with output: output.clear_output(wait=True) sorted_df = df.sort_values(by=sort_dropdown.value) display(sorted_df.style.set_properties(**{ 'text-align': 'left', 'border': '1px solid #ddd', })) # Attach the update_display function to the dropdown widget sort_dropdown.observe(update_display, names='value') # Display the dropdown and the table initially display(sort_dropdown, output) update_display(None) def list_data(): #print(*list(datasets.keys()),sep='\n') data = avail_datasets() # Convert data to a pandas DataFrame df = pd.DataFrame(data) # Add a column for displaying row numbers starting from 1 df.index += 1 # Create dropdown widget for sorting sort_dropdown = widgets.Dropdown( options=['Dataset', 'Input', 'Output', 'Path', 'Timestamp'], value='Input', description='Sort by:', disabled=False, ) # Output widget to display the table output = widgets.Output() # Define function to update display based on sorting def update_display(change): with output: output.clear_output(wait=True) sorted_df = df.sort_values(by=sort_dropdown.value) display(sorted_df.style.set_properties(**{ 'text-align': 'left', 'border': '1px solid #ddd', })) # Attach the update_display function to the dropdown widget sort_dropdown.observe(update_display, names='value') # Display the dropdown and the table initially display(sort_dropdown, output) update_display(None) def vizualize(roc_auc,fpr, tpr, features, labels): #def vizualize(features, labels): reducer = umap.UMAP(metric="jaccard", n_neighbors=20, n_components=2, low_memory=True, min_dist=0.001, verbose=False) features_umap = reducer.fit_transform(features) x = labels.values index_0 = [index for index in range(len(x)) if x[index] == 0] index_1 = [index for index in range(len(x)) if x[index] == 1] class_0 = features_umap[index_0] class_1 = features_umap[index_1] # Function to create ROC AUC plot def plot_roc_auc(): plt.figure(figsize=(8, 6)) plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.4f})') plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic') plt.legend(loc='lower right') plt.show() # Function to create scatter plot of the dataset distribution def plot_distribution(): plt.figure(figsize=(8, 6)) #plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.coolwarm, edgecolors='k') plt.scatter(class_1[:, 0], class_1[:, 1], c='red', label='Class 1') plt.scatter(class_0[:, 0], class_0[:, 1], c='blue', label='Class 0') plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.title('Dataset Distribution') plt.show() # Create tabs using ipywidgets tab_contents = ['ROC AUC', 'Distribution'] children = [widgets.Output(), widgets.Output()] tab = widgets.Tab() tab.children = children for i in range(len(tab_contents)): tab.set_title(i, tab_contents[i]) # Display plots in their respective tabs with children[0]: plot_roc_auc() with children[1]: plot_distribution() # Display the tab widget display(tab) def get_representation(train_data,test_data,model_type, return_tensor=True): alias = {"MHG-GED": "mhg", "SELFIES-TED": "bart", "MolFormer": "mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted"} if model_type in alias.keys(): model_type = alias[model_type] if model_type == "mhg": model = mhg.load("models/mhg_model/pickles/mhggnn_pretrained_model_0724_2023.pickle") with torch.no_grad(): train_emb = model.encode(train_data) x_batch = torch.stack(train_emb) test_emb = model.encode(test_data) x_batch_test = torch.stack(test_emb) if not return_tensor: x_batch = pd.DataFrame(x_batch) x_batch_test = pd.DataFrame(x_batch_test) elif model_type == "bart": model = bart() model.load() x_batch = model.encode(train_data, return_tensor=return_tensor) x_batch_test = model.encode(test_data, return_tensor=return_tensor) elif model_type == "smi-ted": model = load_smi_ted(folder='./models/smi_ted/smi_ted_light', ckpt_filename='smi-ted-Light_40.pt') with torch.no_grad(): x_batch = model.encode(train_data, return_torch=return_tensor) x_batch_test = model.encode(test_data, return_torch=return_tensor) elif model_type == "mol-xl": model = AutoModel.from_pretrained("ibm/MoLFormer-XL-both-10pct", deterministic_eval=True, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ibm/MoLFormer-XL-both-10pct", trust_remote_code=True) if type(train_data) == list: inputs = tokenizer(train_data, padding=True, return_tensors="pt") else: inputs = tokenizer(list(train_data.values), padding=True, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) x_batch = outputs.pooler_output if type(test_data) == list: inputs = tokenizer(test_data, padding=True, return_tensors="pt") else: inputs = tokenizer(list(test_data.values), padding=True, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) x_batch_test = outputs.pooler_output if not return_tensor: x_batch = pd.DataFrame(x_batch) x_batch_test = pd.DataFrame(x_batch_test) return x_batch, x_batch_test def single_modal(model,dataset, downstream_model,params): print(model) alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "SMI-TED": "smi-ted"} data = avail_models(raw=True) df = pd.DataFrame(data) print(list(df["Name"].values)) if alias[model] in list(df["Name"].values): if model in alias.keys(): model_type = alias[model] else: model_type = model else: print("Model not available") return data = avail_datasets() df = pd.DataFrame(data) print(list(df["Dataset"].values)) if dataset in list(df["Dataset"].values): task = dataset with open(f"representation/{task}_{model_type}.pkl", "rb") as f1: x_batch, y_batch, x_batch_test, y_batch_test = pickle.load(f1) print(f" Representation loaded successfully") else: print("Custom Dataset") #return components = dataset.split(",") train_data = pd.read_csv(components[0])[components[2]] test_data = pd.read_csv(components[1])[components[2]] y_batch = pd.read_csv(components[0])[components[3]] y_batch_test = pd.read_csv(components[1])[components[3]] x_batch, x_batch_test = get_representation(train_data,test_data,model_type) print(f" Representation loaded successfully") print(f" Calculating ROC AUC Score ...") if downstream_model == "XGBClassifier": xgb_predict_concat = XGBClassifier(**params) # n_estimators=5000, learning_rate=0.01, max_depth=10 xgb_predict_concat.fit(x_batch, y_batch) y_prob = xgb_predict_concat.predict_proba(x_batch_test)[:, 1] roc_auc = roc_auc_score(y_batch_test, y_prob) fpr, tpr, _ = roc_curve(y_batch_test, y_prob) print(f"ROC-AUC Score: {roc_auc:.4f}") try: with open(f"plot_emb/{task}_{model_type}.pkl", "rb") as f1: class_0,class_1 = pickle.load(f1) except: print("Generating latent plots") reducer = umap.UMAP(metric='euclidean', n_neighbors=10, n_components=2, low_memory=True, min_dist=0.1, verbose=False) n_samples = np.minimum(1000, len(x_batch)) features_umap = reducer.fit_transform(x_batch[:n_samples]) x = y_batch.values[:n_samples] index_0 = [index for index in range(len(x)) if x[index] == 0] index_1 = [index for index in range(len(x)) if x[index] == 1] class_0 = features_umap[index_0] class_1 = features_umap[index_1] print("Generating latent plots : Done") #vizualize(roc_auc,fpr, tpr, x_batch, y_batch ) result = f"ROC-AUC Score: {roc_auc:.4f}" return result, roc_auc,fpr, tpr, class_0, class_1 elif downstream_model == "DefaultClassifier": xgb_predict_concat = XGBClassifier() # n_estimators=5000, learning_rate=0.01, max_depth=10 xgb_predict_concat.fit(x_batch, y_batch) y_prob = xgb_predict_concat.predict_proba(x_batch_test)[:, 1] roc_auc = roc_auc_score(y_batch_test, y_prob) fpr, tpr, _ = roc_curve(y_batch_test, y_prob) print(f"ROC-AUC Score: {roc_auc:.4f}") try: with open(f"plot_emb/{task}_{model_type}.pkl", "rb") as f1: class_0,class_1 = pickle.load(f1) except: print("Generating latent plots") reducer = umap.UMAP(metric='euclidean', n_neighbors= 10, n_components=2, low_memory=True, min_dist=0.1, verbose=False) n_samples = np.minimum(1000,len(x_batch)) features_umap = reducer.fit_transform(x_batch[:n_samples]) x = y_batch.values[:n_samples] index_0 = [index for index in range(len(x)) if x[index] == 0] index_1 = [index for index in range(len(x)) if x[index] == 1] class_0 = features_umap[index_0] class_1 = features_umap[index_1] print("Generating latent plots : Done") #vizualize(roc_auc,fpr, tpr, x_batch, y_batch ) result = f"ROC-AUC Score: {roc_auc:.4f}" return result, roc_auc,fpr, tpr, class_0, class_1 elif downstream_model == "SVR": regressor = SVR(**params) model = TransformedTargetRegressor(regressor= regressor, transformer = MinMaxScaler(feature_range=(-1, 1)) ).fit(x_batch,y_batch) y_prob = model.predict(x_batch_test) RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob)) print(f"RMSE Score: {RMSE_score:.4f}") result = f"RMSE Score: {RMSE_score:.4f}" print("Generating latent plots") reducer = umap.UMAP(metric='euclidean', n_neighbors=10, n_components=2, low_memory=True, min_dist=0.1, verbose=False) n_samples = np.minimum(1000, len(x_batch)) features_umap = reducer.fit_transform(x_batch[:n_samples]) x = y_batch.values[:n_samples] #index_0 = [index for index in range(len(x)) if x[index] == 0] #index_1 = [index for index in range(len(x)) if x[index] == 1] class_0 = features_umap#[index_0] class_1 = features_umap#[index_1] print("Generating latent plots : Done") return result, RMSE_score,y_batch_test, y_prob, class_0, class_1 elif downstream_model == "Kernel Ridge": regressor = KernelRidge(**params) model = TransformedTargetRegressor(regressor=regressor, transformer=MinMaxScaler(feature_range=(-1, 1)) ).fit(x_batch, y_batch) y_prob = model.predict(x_batch_test) RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob)) print(f"RMSE Score: {RMSE_score:.4f}") result = f"RMSE Score: {RMSE_score:.4f}" print("Generating latent plots") reducer = umap.UMAP(metric='euclidean', n_neighbors=10, n_components=2, low_memory=True, min_dist=0.1, verbose=False) n_samples = np.minimum(1000, len(x_batch)) features_umap = reducer.fit_transform(x_batch[:n_samples]) x = y_batch.values[:n_samples] # index_0 = [index for index in range(len(x)) if x[index] == 0] # index_1 = [index for index in range(len(x)) if x[index] == 1] class_0 = features_umap#[index_0] class_1 = features_umap#[index_1] print("Generating latent plots : Done") return result, RMSE_score, y_batch_test, y_prob, class_0, class_1 elif downstream_model == "Linear Regression": regressor = LinearRegression(**params) model = TransformedTargetRegressor(regressor=regressor, transformer=MinMaxScaler(feature_range=(-1, 1)) ).fit(x_batch, y_batch) y_prob = model.predict(x_batch_test) RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob)) print(f"RMSE Score: {RMSE_score:.4f}") result = f"RMSE Score: {RMSE_score:.4f}" print("Generating latent plots") reducer = umap.UMAP(metric='euclidean', n_neighbors=10, n_components=2, low_memory=True, min_dist=0.1, verbose=False) n_samples = np.minimum(1000, len(x_batch)) features_umap = reducer.fit_transform(x_batch[:n_samples]) x = y_batch.values[:n_samples] # index_0 = [index for index in range(len(x)) if x[index] == 0] # index_1 = [index for index in range(len(x)) if x[index] == 1] class_0 = features_umap#[index_0] class_1 = features_umap#[index_1] print("Generating latent plots : Done") return result, RMSE_score, y_batch_test, y_prob, class_0, class_1 elif downstream_model == "DefaultRegressor": regressor = SVR(kernel="rbf", degree=3, C=5, gamma="scale", epsilon=0.01) model = TransformedTargetRegressor(regressor=regressor, transformer=MinMaxScaler(feature_range=(-1, 1)) ).fit(x_batch, y_batch) y_prob = model.predict(x_batch_test) RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob)) print(f"RMSE Score: {RMSE_score:.4f}") result = f"RMSE Score: {RMSE_score:.4f}" print("Generating latent plots") reducer = umap.UMAP(metric='euclidean', n_neighbors=10, n_components=2, low_memory=True, min_dist=0.1, verbose=False) n_samples = np.minimum(1000, len(x_batch)) features_umap = reducer.fit_transform(x_batch[:n_samples]) x = y_batch.values[:n_samples] # index_0 = [index for index in range(len(x)) if x[index] == 0] # index_1 = [index for index in range(len(x)) if x[index] == 1] class_0 = features_umap#[index_0] class_1 = features_umap#[index_1] print("Generating latent plots : Done") return result, RMSE_score, y_batch_test, y_prob, class_0, class_1 def multi_modal(model_list,dataset, downstream_model,params): print(model_list) data = avail_datasets() df = pd.DataFrame(data) list(df["Dataset"].values) if dataset in list(df["Dataset"].values): task = dataset predefined = True else: predefined = False components = dataset.split(",") train_data = pd.read_csv(components[0])[components[2]] test_data = pd.read_csv(components[1])[components[2]] y_batch = pd.read_csv(components[0])[components[3]] y_batch_test = pd.read_csv(components[1])[components[3]] print("Custom Dataset loaded") data = avail_models(raw=True) df = pd.DataFrame(data) list(df["Name"].values) alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "SMI-TED":"smi-ted"} #if set(model_list).issubset(list(df["Name"].values)): if set(model_list).issubset(list(alias.keys())): for i, model in enumerate(model_list): if model in alias.keys(): model_type = alias[model] else: model_type = model if i == 0: if predefined: with open(f"representation/{task}_{model_type}.pkl", "rb") as f1: x_batch, y_batch, x_batch_test, y_batch_test = pickle.load(f1) print(f" Loaded representation/{task}_{model_type}.pkl") else: x_batch, x_batch_test = get_representation(train_data, test_data, model_type) x_batch = pd.DataFrame(x_batch) x_batch_test = pd.DataFrame(x_batch_test) else: if predefined: with open(f"representation/{task}_{model_type}.pkl", "rb") as f1: x_batch_1, y_batch_1, x_batch_test_1, y_batch_test_1 = pickle.load(f1) print(f" Loaded representation/{task}_{model_type}.pkl") else: x_batch_1, x_batch_test_1 = get_representation(train_data, test_data, model_type) x_batch_1 = pd.DataFrame(x_batch_1) x_batch_test_1 = pd.DataFrame(x_batch_test_1) x_batch = pd.concat([x_batch, x_batch_1], axis=1) x_batch_test = pd.concat([x_batch_test, x_batch_test_1], axis=1) else: print("Model not available") return num_columns = x_batch_test.shape[1] x_batch_test.columns = [f'{i + 1}' for i in range(num_columns)] num_columns = x_batch.shape[1] x_batch.columns = [f'{i + 1}' for i in range(num_columns)] print(f"Representations loaded successfully") try: with open(f"plot_emb/{task}_multi.pkl", "rb") as f1: class_0, class_1 = pickle.load(f1) except: print("Generating latent plots") reducer = umap.UMAP(metric='euclidean', n_neighbors=10, n_components=2, low_memory=True, min_dist=0.1, verbose=False) n_samples = np.minimum(1000, len(x_batch)) features_umap = reducer.fit_transform(x_batch[:n_samples]) if "Classifier" in downstream_model: x = y_batch.values[:n_samples] index_0 = [index for index in range(len(x)) if x[index] == 0] index_1 = [index for index in range(len(x)) if x[index] == 1] class_0 = features_umap[index_0] class_1 = features_umap[index_1] else: class_0 = features_umap class_1 = features_umap print("Generating latent plots : Done") print(f" Calculating ROC AUC Score ...") if downstream_model == "XGBClassifier": xgb_predict_concat = XGBClassifier(**params)#n_estimators=5000, learning_rate=0.01, max_depth=10) xgb_predict_concat.fit(x_batch, y_batch) y_prob = xgb_predict_concat.predict_proba(x_batch_test)[:, 1] roc_auc = roc_auc_score(y_batch_test, y_prob) fpr, tpr, _ = roc_curve(y_batch_test, y_prob) print(f"ROC-AUC Score: {roc_auc:.4f}") #vizualize(roc_auc,fpr, tpr, x_batch, y_batch ) #vizualize(x_batch_test, y_batch_test) print(f"ROC-AUC Score: {roc_auc:.4f}") result = f"ROC-AUC Score: {roc_auc:.4f}" return result, roc_auc,fpr, tpr, class_0, class_1 elif downstream_model == "DefaultClassifier": xgb_predict_concat = XGBClassifier()#n_estimators=5000, learning_rate=0.01, max_depth=10) xgb_predict_concat.fit(x_batch, y_batch) y_prob = xgb_predict_concat.predict_proba(x_batch_test)[:, 1] roc_auc = roc_auc_score(y_batch_test, y_prob) fpr, tpr, _ = roc_curve(y_batch_test, y_prob) print(f"ROC-AUC Score: {roc_auc:.4f}") #vizualize(roc_auc,fpr, tpr, x_batch, y_batch ) #vizualize(x_batch_test, y_batch_test) print(f"ROC-AUC Score: {roc_auc:.4f}") result = f"ROC-AUC Score: {roc_auc:.4f}" return result, roc_auc,fpr, tpr, class_0, class_1 elif downstream_model == "SVR": regressor = SVR(**params) model = TransformedTargetRegressor(regressor= regressor, transformer = MinMaxScaler(feature_range=(-1, 1)) ).fit(x_batch,y_batch) y_prob = model.predict(x_batch_test) RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob)) print(f"RMSE Score: {RMSE_score:.4f}") result = f"RMSE Score: {RMSE_score:.4f}" return result, RMSE_score,y_batch_test, y_prob, class_0, class_1 elif downstream_model == "Linear Regression": regressor = LinearRegression(**params) model = TransformedTargetRegressor(regressor=regressor, transformer=MinMaxScaler(feature_range=(-1, 1)) ).fit(x_batch, y_batch) y_prob = model.predict(x_batch_test) RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob)) print(f"RMSE Score: {RMSE_score:.4f}") result = f"RMSE Score: {RMSE_score:.4f}" return result, RMSE_score, y_batch_test, y_prob, class_0, class_1 elif downstream_model == "Kernel Ridge": regressor = KernelRidge(**params) model = TransformedTargetRegressor(regressor=regressor, transformer=MinMaxScaler(feature_range=(-1, 1)) ).fit(x_batch, y_batch) y_prob = model.predict(x_batch_test) RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob)) print(f"RMSE Score: {RMSE_score:.4f}") result = f"RMSE Score: {RMSE_score:.4f}" return result, RMSE_score, y_batch_test, y_prob, class_0, class_1 elif downstream_model == "DefaultRegressor": regressor = SVR(kernel="rbf", degree=3, C=5, gamma="scale", epsilon=0.01) model = TransformedTargetRegressor(regressor=regressor, transformer=MinMaxScaler(feature_range=(-1, 1)) ).fit(x_batch, y_batch) y_prob = model.predict(x_batch_test) RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob)) print(f"RMSE Score: {RMSE_score:.4f}") result = f"RMSE Score: {RMSE_score:.4f}" return result, RMSE_score, y_batch_test, y_prob, class_0, class_1 def finetune_optuna(x_batch,y_batch, x_batch_test, y_test ): print(f" Finetuning with Optuna and calculating ROC AUC Score ...") X_train = x_batch.values y_train = y_batch.values X_test = x_batch_test.values y_test = y_test.values def objective(trial): # Define parameters to be optimized params = { # 'objective': 'binary:logistic', 'eval_metric': 'auc', 'verbosity': 0, 'n_estimators': trial.suggest_int('n_estimators', 1000, 10000), # 'booster': trial.suggest_categorical('booster', ['gbtree', 'gblinear', 'dart']), # 'lambda': trial.suggest_loguniform('lambda', 1e-8, 1.0), 'alpha': trial.suggest_loguniform('alpha', 1e-8, 1.0), 'max_depth': trial.suggest_int('max_depth', 1, 12), # 'eta': trial.suggest_loguniform('eta', 1e-8, 1.0), # 'gamma': trial.suggest_loguniform('gamma', 1e-8, 1.0), # 'grow_policy': trial.suggest_categorical('grow_policy', ['depthwise', 'lossguide']), # "subsample": trial.suggest_float("subsample", 0.05, 1.0), # "colsample_bytree": trial.suggest_float("colsample_bytree", 0.05, 1.0), } # Train XGBoost model dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) model = xgb.train(params, dtrain) # Predict probabilities y_pred = model.predict(dtest) # Calculate ROC AUC score roc_auc = roc_auc_score(y_test, y_pred) print("ROC_AUC : ", roc_auc) return roc_auc