import os import csv from functools import partial from typing import List import time import gradio as gr from langchain.text_splitter import RecursiveCharacterTextSplitter import chromadb from chromadb.config import Settings from chromadb import Documents, EmbeddingFunction, Embeddings from google import genai from google.genai import types from tqdm import tqdm from google.genai.errors import ClientError class GeminiEmbeddingFunction(EmbeddingFunction): def __init__(self, gemini_client: genai.Client, emb_model: str): self.gemini_client = gemini_client self.emb_model = emb_model def __call__(self, input_batch: List[Documents]) -> List[Embeddings]: gemini_out = self.gemini_client.models.embed_content(model=self.emb_model, contents=input_batch) embeddings = [e.values for e in gemini_out.embeddings] return embeddings def create_or_get_chroma_db( gemini_client: genai.Client, emb_model: str, articles_md_root: str, file2url_path: str, db_root: str, ) -> chromadb.Collection: # Create the database root directory os.makedirs(db_root, exist_ok=True) # Initialize the Chroma client chroma_client = chromadb.PersistentClient(path=db_root, settings=Settings(anonymized_telemetry=False)) # Attempt to retrieve the existing collection db = chroma_client.get_or_create_collection(name="Oura_Support_Faq", embedding_function=GeminiEmbeddingFunction(gemini_client, emb_model)) # Check if the collection already exists if db.count() > 0: print(f"Collection already exists with {db.count()} documents.") return db # Load the filename2url mapping with open(file2url_path, 'r') as f: reader = csv.reader(f) rows = [row for row in reader] filename2url = {rows[1] + '.md': rows[0] for rows in rows} filename2title = {rows[1] + '.md': rows[2] for rows in rows} # Load and chunk the documents from the output directory splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, add_start_index=True, separators=["##", "\n\n", "\n", " ", ""], ) splits = [] for filename in os.listdir(articles_md_root): if filename.endswith('.md'): with open(os.path.join(articles_md_root, filename), 'r', encoding='utf-8') as f: content = f.read() meta = {'Source': f'[{filename2title[filename]}]({filename2url[filename]})',} chunks = splitter.create_documents([content], metadatas=[meta]) splits.extend(chunks) # Extract documents, metadata, and IDs from the chunks documents = [chunk.page_content for chunk in splits] metadatas = [chunk.metadata for chunk in splits] ids = [f"id_{i}" for i in range(len(documents))] # Using batching to embed multiple documents at once, without calling the API too many times batch_size = 64 # Iterate over the documents in batches for i in tqdm(range(0, len(documents), batch_size)): slice_batch = slice(i, i + batch_size) doc_batch, meta_batch, ids_batch = documents[slice_batch], metadatas[slice_batch], ids[slice_batch] # Add documents, embeddings, IDs, and metadata to the collection # using upsert to add new documents or update existing ones db.upsert( documents=doc_batch, ids=ids_batch, metadatas=meta_batch ) time.sleep(2) # Optional: sleep to avoid hitting API limits print(f"Added {len(documents)} documents to the database.") return db def get_prompt_from_question(question: str, db: chromadb.Collection, n: int, verbose: bool = True) -> str: prompt_template = """ Context from Oura documentation/forums:""" result = db.query(query_texts=[question], n_results=n) passages = result['documents'][0] for p in range(len(passages)): sim = result['distances'][0][p] source = result['metadatas'][0][p]['Source'] prompt_template += f"\n\nChunk {p}:\n" prompt_template += f"Similarity: {sim:.3f}\n" prompt_template += f"Source: {source}\n" prompt_template += passages[p] prompt_template += "\n\n" + f"User Question: {question}" prompt_template += "\n\n" + "Answer:" if verbose: print(prompt_template) return prompt_template def chatbot_response( user_input: str, history: list, db: chromadb.Collection, llm_name: str, system_prompt: str, turns_to_keep: int, num_neighbors_per_query: int, ) -> str: # Add the user input to the conversation history # keeping only the last turns_to_keep turns history = history[-turns_to_keep:] conversation_history = "\n".join([f'User: {turn[0]}; Agent: {turn[1]}' for turn in history]) try: prompt = get_prompt_from_question(user_input, db, num_neighbors_per_query) prompt = f"Previous turns: {conversation_history} \n\n New prompt: {prompt}" print('==========================================================================') print(prompt) print('==========================================================================') # Generate the response using the Gemini API response = client.models.generate_content( model=llm_name, contents=prompt, config=types.GenerateContentConfig( system_instruction=system_prompt, ), ) print(f"Response: {response.text}") print('') print('') except ClientError as e: print(f"Got the error: {e}.") print('Maybe API is busy. Will try in a second...') time.sleep(3) prompt = get_prompt_from_question(user_input, db, num_neighbors_per_query) response = client.models.generate_content( model=llm_name, contents=prompt, config=types.GenerateContentConfig( system_instruction=system_prompt, ), ) return response.text if __name__ == "__main__": llm_name = 'gemini-2.0-flash-001' emb_model = 'models/text-embedding-004' articles_md_root = './assets/oura_articles' file2url_path = './assets/data/links_paths.csv' db_root = os.path.join(os.getcwd(), 'assets', f'databases-{emb_model.split("/")[-1]}') # ./assets/databases-/ turns_to_keep = 5 num_neighbors_per_query = 5 system_prompt = """ You are an AI assistant specializing in providing support for the Oura mobile application, assisting users with their inquiries based solely on the provided context. ## Rules: - **Exclusive Reliance on Provided Context**: Answer questions using only the supplied context. Do not incorporate external knowledge. - **Handling Insufficient Context**: - If the context lacks sufficient information, respond with: *"I cannot answer based on the provided information."* - If a user query contains ambiguous references (e.g., "it", "this") and the context does not clarify them, politely ask for clarification: *"Could you please specify what you mean by 'it'? 😊"* - **Citations**: Cite information using the 'Source' metadata provided with each chunk. Keep citations sparse—cite once per paragraph or at the end of the relevant section. Use hyper-links. - **Preference for Relevant Chunks**: Prioritize information from chunks with lower similarity scores, as they are more pertinent. ## Formatting Guidelines: - **Markdown Usage**: Format responses in Markdown for clarity and readability. - **Tone**: Maintain a friendly and engaging tone. 😊 A couple of well-placed emojis are encouraged! - **Image Inclusion**: - Use HTML for images: `...` - If the original `alt` text includes "icon", add `width: 50px; height: 50px;` to the `style` attribute, e.g. battery, share, adjustment, menu etc icons. ## Examples: **Example 1: Sufficient Context** *User Question*: "How can I change the units of measurement in the Oura app?" *Context Provided*: - Chunk 1: "# Oura App Languages The Oura App is currently available in: * Danish ... * Swedish The Oura App also supports both metric and imperial units of measurement, which can be adjusted through the app's ![Icon Bars Menu.png](https://support.ouraring.com/hc/article_attachments/28601966533139) menu > Settings > Units." *Response*: "You can adjust the units of measurement in the Oura app through the app's Icon Bars Menu.png menu > **Settings** > **Units**. Source: [Oura App Languages](https://support.ouraring.com/hc/en-us/articles/360058028053-Oura-App-Languages)" **Example 2: Ambiguous Reference with Insufficient Context** *User Question*: "Can you do X?" *Agent Response*: "Yes, you can." *User Follow-up*: "How to do it?" *Context Provided*: *(No relevant information about 'X')* *Response*: "Could you please specify what you mean by 'it' so I can assist you better? 😊" **Example 3: Insufficient Context without Ambiguity** *User Question*: "What is the Oura app's refund policy?" *Context Provided*: *(No information on refund policy)* *Response*: "I cannot answer based on the provided information." **Example 4: Image Inclusion** *User Question*: "How to do X?" *Context Provided*: "Oura App supports X, and you can do it by following these steps: ... ![hw_reset_remastered.gif](https://support.ouraring.com/hc/article_attachments/34549633600147) ... ![ring battery level icon](https://support.ouraring.com/hc/article_attachments/28720126068115) ... [![app_ux_today_tab.png](https://support.ouraring.com/hc/article_attachments/36252969067283)](/hc/article_attachments/36252969067283) ..." *Response*: "To do X, follow these steps: ... hw_reset_remastered.gif ... ring battery level icon ... app_ux_today_tab.png ..." (only an icon is resized) ## Final Reminders: - Base responses strictly on the retrieved context. - Avoid fabricating information. - Be friendly and engaging. - Cite sparsely. - Use html for images with `object-fit: contain;` style, and resize icons to `50px` width and height. - When in doubt, seek clarification or acknowledge the lack of information. """ # Initialize the Gemini client client = genai.Client(api_key=os.environ['GEMINI_KEY']) # Initialize Chroma database: create or load the database db = create_or_get_chroma_db( gemini_client=client, emb_model=emb_model, articles_md_root=articles_md_root, file2url_path=file2url_path, db_root=db_root, ) chatbot_response_partial = partial( chatbot_response, db=db, llm_name=llm_name, system_prompt=system_prompt, turns_to_keep=turns_to_keep, num_neighbors_per_query=num_neighbors_per_query, ) # Create the Gradio interface with gr.Blocks() as demo: chatbot = gr.ChatInterface( title='My Precious: Your Inner Circle of Insight', fn=chatbot_response_partial, ) # Launch the Gradio app demo.launch()