import multiprocessing from langchain.docstore.document import Document as LangChainDocument from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from huggingface_hub import login from loguru import logger from transformers import pipeline import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import os from dotenv import load_dotenv def main(): load_dotenv() logger.info('Carregando arquivo no qual será baseado o RAG.') with open('train.txt', 'r') as f: data = f.read() logger.info('Representando o documento utilizando o LangChainDocument.') raw_database = LangChainDocument(page_content=data) MARKDOWN_SEPARATORS = [ "\n#{1,6} ", "```\n", "\n\\*\\*\\*+\n", "\n---+\n", "\n___+\n", "\n\n", "\n", " ", "", ] logger.info('Quebrando o documento para a criação dos chunks.') splitter = RecursiveCharacterTextSplitter(separators=MARKDOWN_SEPARATORS, chunk_size=1000, chunk_overlap=100) process_data = splitter.split_documents([raw_database]) process_data = process_data[:5] # TODO: REMOVER DEPOIS embedding_model_name = "thenlper/gte-small" logger.info(f'Definição do modelo de embeddings: {embedding_model_name}.') embedding_model = HuggingFaceEmbeddings( model_name=embedding_model_name, multi_process=True, model_kwargs={"device": "cpu"}, # TODO: AJUSTAR DEPOIS encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity ) logger.info('Criação da base de dados vetorial (em memória).') vectors = FAISS.from_documents(process_data, embedding_model) # model_name = "meta-llama/Llama-3.2-1B" model_name = "HuggingFaceH4/zephyr-7b-beta" # model_name = "mistralai/Mistral-7B-Instruct-v0.3" # model_name = "meta-llama/Llama-3.2-3B-Instruct" logger.info(f'Carregamento do modelo de linguagem principal: {model_name}') # bnb_config = BitsAndBytesConfig( # load_in_4bit=True, # bnb_4bit_use_double_quant=True, # bnb_4bit_quant_type="nf4", # bnb_4bit_compute_dtype=torch.bfloat16, # ) # model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=bnb_config) model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) llm_model = pipeline( model=model, tokenizer=tokenizer, task="text-generation", do_sample=True, temperature=0.4, repetition_penalty=1.1, return_full_text=False, max_new_tokens=500 ) logger.info(f'Modelo {model_name} carregado com sucesso.') prompt = """ <|system|> You are a helpful assistant that answers on medical questions based on the real information provided from different sources and in the context. Give the rational and well written response. If you don't have proper info in the context, answer "I don't know" Respond only to the question asked. <|user|> Context: {} --- Here is the question you need to answer. Question: {} --- <|assistant|> """ question = "What is Cardiogenic shock?" search_results = vectors.similarity_search(question, k=3) logger.info('Contexto: ') for i, search_result in enumerate(search_results): logger.info(f"{i + 1}) {search_result.page_content}") context = " ".join([search_result.page_content for search_result in search_results]) final_prompt = prompt.format(context, question) logger.info(f'\n{final_prompt}\n') answer = llm_model(final_prompt) logger.info("AI response: ", answer[0]['generated_text']) if __name__ == '__main__': multiprocessing.freeze_support() access_token = os.getenv("ACCESS_TOKEN") login(token=access_token) logger.info('Login realizado com sucesso.') main()