import streamlit as st import numpy as np import joblib import pandas as pd # Load model best_model = joblib.load('final_model.pkl') def run(): # Load dataset df = pd.read_csv("Finpro_data_clean.csv") # Map state abbreviations to full names us_state_names = { 'AL': 'Alabama', 'AK': 'Alaska', 'AZ': 'Arizona', 'AR': 'Arkansas', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DE': 'Delaware', 'DC': 'District of Columbia', 'FL': 'Florida', 'GA': 'Georgia', 'HI': 'Hawaii', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'IA': 'Iowa', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'ME': 'Maine', 'MD': 'Maryland', 'MA': 'Massachusetts', 'MI': 'Michigan', 'MN': 'Minnesota', 'MS': 'Mississippi', 'MO': 'Missouri', 'MT': 'Montana', 'NE': 'Nebraska', 'NV': 'Nevada', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NY': 'New York', 'NC': 'North Carolina', 'ND': 'North Dakota', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VT': 'Vermont', 'VA': 'Virginia', 'WA': 'Washington', 'WV': 'West Virginia', 'WI': 'Wisconsin', 'WY': 'Wyoming' } df['state_full'] = df['state'].map(us_state_names) state_list = df['state_full'].dropna().unique().tolist() state_list.sort() category_map = {cat.replace('_', ' ').title(): cat for cat in df['category'].dropna().unique()} category_list = sorted(category_map.keys()) # Title st.title("🛡️ Fraud Detection Form") with st.form("fraud_form"): trans_hour = st.number_input('Jam Transaksi (0-23):', min_value=0, max_value=23, value=0, help = 'Input jam transaksi') amt = st.number_input('Amount Transaksi ($):', min_value=0.0, value=0.0, step=1.0, help = 'Input amount transaksi') age = st.number_input('Umur Customer:', min_value=0, max_value=120, value=0, help = 'Input umur user') category_label = st.selectbox('Kategori Transaksi:', category_list, help = 'Input kategori transaksi') state_full = st.selectbox('Lokasi User:', state_list, help = 'Input lokasi user') submitted = st.form_submit_button('Predict') # Reverse maps reverse_state_map = {v: k for k, v in us_state_names.items()} state = reverse_state_map.get(state_full) category = category_map.get(category_label) # Inference DataFrame data_inf = pd.DataFrame([{ 'trans_hour': trans_hour, 'amt': amt, 'age': age, 'category': category, 'state': state }]) st.write("### 🔎 Input Summary") st.dataframe(data_inf) if submitted: prediction_result = best_model.predict(data_inf)[0] prediction_proba = best_model.predict_proba(data_inf)[0] confidence = prediction_proba[prediction_result] * 100 if prediction_result == 0: # Transaksi Legit (centered green box) st.markdown( f"""
✅ Transaksi Legit
Confidence: {confidence:.2f}%
""", unsafe_allow_html=True ) else: # Fraud Detected (centered red box) st.markdown( f"""
🟥 Fraud Terdeteksi!
Confidence: {confidence:.2f}%
""", unsafe_allow_html=True ) if __name__ == '__main__': run()