experiment: seed: 88 save_dir: ../experiments/ data: annotations: ../data/train_vertebra_chunks_kfold.csv data_dir: ../data/train-numpy-vertebra-chunks input: filename target: fracture outer_fold: 0 dataset: name: NumpyChunkDataset params: flip: true invert: false channels: grayscale z_lt: resample_resample z_gt: resample_resample num_images: 64 transform: resize: name: resize_ignore_3d params: imsize: [64, 288, 288] augment: null crop: null preprocess: name: Preprocessor params: image_range: [0, 255] input_range: [0, 1] mean: [0.5] sdev: [0.5] task: name: ClassificationTask params: model: name: Net3D params: backbone: x3d_l backbone_params: z_strides: [1, 1, 1, 1, 1] pretrained: true num_classes: 1 dropout: 0.2 pool: avg in_channels: 1 multisample_dropout: true loss: name: BCEWithLogitsLoss params: optimizer: name: AdamW params: lr: 3.0e-4 weight_decay: 5.0e-4 scheduler: name: CosineAnnealingLR params: final_lr: 0.0 train: batch_size: 4 num_epochs: 10 evaluate: metrics: [AUROC] monitor: auc_mean mode: max