from torch import nn from typing import Optional from ...base import ( SegmentationModel, SegmentationHead_3D, ClassificationHead, ) from ...encoders.create import create_encoder from .decoder import DeepLabV3PlusDecoder_3D class DeepLabV3Plus_3D(SegmentationModel): """DeepLabV3+ implementation from "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation" Args: encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone) to extract features of different spatial resolution encoder_depth: A number of stages used in encoder in range [3, 5]. Each stage generate features two times smaller in spatial dimensions than previous one (e.g. for depth 0 we will have features with shapes [(N, C, H, W),], for depth 1 - [(N, C, H, W), (N, C, H // 2, W // 2)] and so on). Default is 5 encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and other pretrained weights (see table with available weights for each encoder_name) encoder_output_stride: Downsampling factor for last encoder features (see original paper for explanation) decoder_atrous_rates: Dilation rates for ASPP module (should be a tuple of 3 integer values) decoder_channels: A number of convolution filters in ASPP module. Default is 256 in_channels: A number of input channels for the model, default is 3 (RGB images) classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, **callable** and **None**. Default is **None** upsampling: Final upsampling factor. Default is 4 to preserve input-output spatial shape identity aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: - classes (int): A number of classes - pooling (str): One of "max", "avg". Default is "avg" - dropout (float): Dropout factor in [0, 1) - activation (str): An activation function to apply "sigmoid"/"softmax" (could be **None** to return logits) Returns: ``torch.nn.Module``: **DeepLabV3Plus** Reference: https://arxiv.org/abs/1802.02611v3 """ def __init__( self, encoder_name: str, encoder_params: dict = {"pretrained": True, "output_stride": 16}, decoder_channels: int = 256, decoder_atrous_rates: tuple = (12, 24, 36), dropout: float = 0.2, in_channels: int = 3, classes: int = 1, deep_supervision: bool = False, norm_layer: str = "batch_norm", activation: Optional[str] = None, upsampling: int = 4, aux_params: Optional[dict] = None, ): super().__init__() assert "x3d" in encoder_name, "Only X3D backbone is currently supported for 3D segmentation" encoder_output_stride = encoder_params.pop("output_stride", None) if encoder_output_stride not in [8, 16, 32]: raise ValueError("Encoder output stride should be 8, 16, or 32; got {}".format(encoder_output_stride)) self.encoder = create_encoder( name=encoder_name, encoder_params=encoder_params, encoder_output_stride=encoder_output_stride, in_channels=in_channels ) assert norm_layer in ["batch_norm", "group_norm"] self.decoder = DeepLabV3PlusDecoder_3D( encoder_channels=self.encoder.out_channels, out_channels=decoder_channels, atrous_rates=decoder_atrous_rates, output_stride=encoder_output_stride, deep_supervision = deep_supervision, norm_layer=norm_layer, ) self.segmentation_head = SegmentationHead_3D( in_channels=self.decoder.out_channels, out_channels=classes, kernel_size=1, dropout=dropout, upsampling=upsampling, ) self.deep_supervision = deep_supervision if self.deep_supervision: self.supervisor_heads = [] self.supervisor_heads.append( SegmentationHead_3D( in_channels=48, out_channels=classes, dropout=dropout, kernel_size=3, upsampling=1, ) ) self.supervisor_heads.append( SegmentationHead_3D( in_channels=decoder_channels, out_channels=classes, dropout=dropout, kernel_size=3, upsampling=1, ) ) self.supervisor_heads = nn.Sequential(*self.supervisor_heads) if aux_params is not None: self.classification_head = ClassificationHead(in_channels=self.encoder.out_channels[-1], **aux_params) else: self.classification_head = None