experiment: seed: 88 save_dir: ../experiments/ data: annotations: ../data/train_seg_whole_192_kfold_with_pseudo.csv data_dir: ../data/ input: filename target: label outer_fold: 0 dataset: name: NumpyChunkSegmentDataset params: segmentation_format: numpy channels: grayscale flip: true transpose: true invert: false verbose: true num_images: 192 z_lt: resample_resample z_gt: resample_resample one_hot_encode: true num_classes: 8 add_foreground_channel: false transform: resize: name: resize_ignore_3d params: imsize: [192, 192, 192] augment: null crop: null preprocess: name: Preprocessor params: image_range: [0, 255] input_range: [0, 1] mean: [0.5] sdev: [0.5] task: name: SegmentationTask3D params: chunk_validation: true model: name: NetSegment3D params: architecture: DeepLabV3Plus_3D encoder_name: x3d_l encoder_params: pretrained: true output_stride: 16 z_strides: [2, 2, 2, 2, 2] decoder_params: upsampling: 4 deep_supervision: true num_classes: 8 in_channels: 1 dropout: 0.2 loss: name: SupervisorLoss params: segmentation_loss: DiceBCELoss scale_factors: [0.25, 0.25] loss_weights: [1.0, 0.25, 0.25] loss_params: dice_loss_params: mode: multilabel exponent: 2 smooth: 1.0 bce_loss_params: smooth_factor: 0.01 pos_weight: 1.0 dice_loss_weight: 1.0 bce_loss_weight: 0.2 optimizer: name: AdamW params: lr: 3.0e-4 weight_decay: 5.0e-4 scheduler: name: CosineAnnealingLR params: final_lr: 0.0 train: batch_size: 4 num_epochs: 10 evaluate: batch_size: 1 metrics: [DSC] monitor: dsc_ignore_mean mode: max