import gradio as gr def greet(name): return "Hello " + name + "!!" import torch from transformers import pipeline speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") from transformers import AutoConfig config = AutoConfig.from_pretrained("dbmdz/bert-base-german-cased") from datasets import load_dataset, Audio # dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # dataset = load_dataset("beans", split="train") dataset = load_dataset("lmms-lab/LMMs-Eval-Lite", "ai2d") dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate)) result = speech_recognizer(dataset[:4]["audio"]) print([d["text"] for d in result]) # ;allenai/WildBench # ==black-forest-labs/FLUX.1-dev== #LLM360/TxT360 sasad model_name = "nlptown/bert-base-multilingual-uncased-sentiment" from transformers import AutoTokenizer, AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.") demo = gr.Interface(fn=greet, inputs="text", outputs="text") demo.launch()