Spaces:
Runtime error
Runtime error
| # SA-Solver: Stochastic Adams Solver (NeurIPS 2023, arXiv:2309.05019) | |
| # Conference: https://proceedings.neurips.cc/paper_files/paper/2023/file/f4a6806490d31216a3ba667eb240c897-Paper-Conference.pdf | |
| # Codebase ref: https://github.com/scxue/SA-Solver | |
| import math | |
| from typing import Union, Callable | |
| import torch | |
| def compute_exponential_coeffs(s: torch.Tensor, t: torch.Tensor, solver_order: int, tau_t: float) -> torch.Tensor: | |
| """Compute (1 + tau^2) * integral of exp((1 + tau^2) * x) * x^p dx from s to t with exp((1 + tau^2) * t) factored out, using integration by parts. | |
| Integral of exp((1 + tau^2) * x) * x^p dx | |
| = product_terms[p] - (p / (1 + tau^2)) * integral of exp((1 + tau^2) * x) * x^(p-1) dx, | |
| with base case p=0 where integral equals product_terms[0]. | |
| where | |
| product_terms[p] = x^p * exp((1 + tau^2) * x) / (1 + tau^2). | |
| Construct a recursive coefficient matrix following the above recursive relation to compute all integral terms up to p = (solver_order - 1). | |
| Return coefficients used by the SA-Solver in data prediction mode. | |
| Args: | |
| s: Start time s. | |
| t: End time t. | |
| solver_order: Current order of the solver. | |
| tau_t: Stochastic strength parameter in the SDE. | |
| Returns: | |
| Exponential coefficients used in data prediction, with exp((1 + tau^2) * t) factored out, ordered from p=0 to p=solver_orderβ1, shape (solver_order,). | |
| """ | |
| tau_mul = 1 + tau_t ** 2 | |
| h = t - s | |
| p = torch.arange(solver_order, dtype=s.dtype, device=s.device) | |
| # product_terms after factoring out exp((1 + tau^2) * t) | |
| # Includes (1 + tau^2) factor from outside the integral | |
| product_terms_factored = (t ** p - s ** p * (-tau_mul * h).exp()) | |
| # Lower triangular recursive coefficient matrix | |
| # Accumulates recursive coefficients based on p / (1 + tau^2) | |
| recursive_depth_mat = p.unsqueeze(1) - p.unsqueeze(0) | |
| log_factorial = (p + 1).lgamma() | |
| recursive_coeff_mat = log_factorial.unsqueeze(1) - log_factorial.unsqueeze(0) | |
| if tau_t > 0: | |
| recursive_coeff_mat = recursive_coeff_mat - (recursive_depth_mat * math.log(tau_mul)) | |
| signs = torch.where(recursive_depth_mat % 2 == 0, 1.0, -1.0) | |
| recursive_coeff_mat = (recursive_coeff_mat.exp() * signs).tril() | |
| return recursive_coeff_mat @ product_terms_factored | |
| def compute_simple_stochastic_adams_b_coeffs(sigma_next: torch.Tensor, curr_lambdas: torch.Tensor, lambda_s: torch.Tensor, lambda_t: torch.Tensor, tau_t: float, is_corrector_step: bool = False) -> torch.Tensor: | |
| """Compute simple order-2 b coefficients from SA-Solver paper (Appendix D. Implementation Details).""" | |
| tau_mul = 1 + tau_t ** 2 | |
| h = lambda_t - lambda_s | |
| alpha_t = sigma_next * lambda_t.exp() | |
| if is_corrector_step: | |
| # Simplified 1-step (order-2) corrector | |
| b_1 = alpha_t * (0.5 * tau_mul * h) | |
| b_2 = alpha_t * (-h * tau_mul).expm1().neg() - b_1 | |
| else: | |
| # Simplified 2-step predictor | |
| b_2 = alpha_t * (0.5 * tau_mul * h ** 2) / (curr_lambdas[-2] - lambda_s) | |
| b_1 = alpha_t * (-h * tau_mul).expm1().neg() - b_2 | |
| return torch.stack([b_2, b_1]) | |
| def compute_stochastic_adams_b_coeffs(sigma_next: torch.Tensor, curr_lambdas: torch.Tensor, lambda_s: torch.Tensor, lambda_t: torch.Tensor, tau_t: float, simple_order_2: bool = False, is_corrector_step: bool = False) -> torch.Tensor: | |
| """Compute b_i coefficients for the SA-Solver (see eqs. 15 and 18). | |
| The solver order corresponds to the number of input lambdas (half-logSNR points). | |
| Args: | |
| sigma_next: Sigma at end time t. | |
| curr_lambdas: Lambda time points used to construct the Lagrange basis, shape (N,). | |
| lambda_s: Lambda at start time s. | |
| lambda_t: Lambda at end time t. | |
| tau_t: Stochastic strength parameter in the SDE. | |
| simple_order_2: Whether to enable the simple order-2 scheme. | |
| is_corrector_step: Flag for corrector step in simple order-2 mode. | |
| Returns: | |
| b_i coefficients for the SA-Solver, shape (N,), where N is the solver order. | |
| """ | |
| num_timesteps = curr_lambdas.shape[0] | |
| if simple_order_2 and num_timesteps == 2: | |
| return compute_simple_stochastic_adams_b_coeffs(sigma_next, curr_lambdas, lambda_s, lambda_t, tau_t, is_corrector_step) | |
| # Compute coefficients by solving a linear system from Lagrange basis interpolation | |
| exp_integral_coeffs = compute_exponential_coeffs(lambda_s, lambda_t, num_timesteps, tau_t) | |
| vandermonde_matrix_T = torch.vander(curr_lambdas, num_timesteps, increasing=True).T | |
| lagrange_integrals = torch.linalg.solve(vandermonde_matrix_T, exp_integral_coeffs) | |
| # (sigma_t * exp(-tau^2 * lambda_t)) * exp((1 + tau^2) * lambda_t) | |
| # = sigma_t * exp(lambda_t) = alpha_t | |
| # exp((1 + tau^2) * lambda_t) is extracted from the integral | |
| alpha_t = sigma_next * lambda_t.exp() | |
| return alpha_t * lagrange_integrals | |
| def get_tau_interval_func(start_sigma: float, end_sigma: float, eta: float = 1.0) -> Callable[[Union[torch.Tensor, float]], float]: | |
| """Return a function that controls the stochasticity of SA-Solver. | |
| When eta = 0, SA-Solver runs as ODE. The official approach uses | |
| time t to determine the SDE interval, while here we use sigma instead. | |
| See: | |
| https://github.com/scxue/SA-Solver/blob/main/README.md | |
| """ | |
| def tau_func(sigma: Union[torch.Tensor, float]) -> float: | |
| if eta <= 0: | |
| return 0.0 # ODE | |
| if isinstance(sigma, torch.Tensor): | |
| sigma = sigma.item() | |
| return eta if start_sigma >= sigma >= end_sigma else 0.0 | |
| return tau_func | |