from transformers import AutoModel, AutoTokenizer import time import importlib from toolbox import update_ui, get_conf global chatglm_model, chatglm_tokenizer chatglm_model = None chatglm_tokenizer = None def model_loader(): global chatglm_model, chatglm_tokenizer if chatglm_tokenizer is None: chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) if chatglm_model is None: # 尚未加载 device, = get_conf('LOCAL_MODEL_DEVICE') if device=='cpu': chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() else: chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() chatglm_model = chatglm_model.eval() chatglm_model = chatglm_model.eval() def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): """ 函数的说明请见 request_llm/bridge_all.py """ global chatglm_model, chatglm_tokenizer if chatglm_model is None: observe_window[0] = "ChatGLM尚未加载,加载需要一段时间 ……" model_loader() # chatglm 没有 sys_prompt 接口,因此把prompt加入 history history_feedin = [] for i in range(len(history)//2): history_feedin.append(["What can I do?", sys_prompt] ) history_feedin.append([history[2*i], history[2*i+1]] ) watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可 response = "" for response, history in chatglm_model.stream_chat(chatglm_tokenizer, inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): # 观测窗,把已经获取的数据显示出去 observe_window[0] = response # 看门狗 (watchdog),如果超过期限没有喂狗,则终止 if len(observe_window) >= 2: if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。") # if not console_slience: # print(response) return response def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): """ 函数的说明请见 request_llm/bridge_all.py """ global chatglm_model, chatglm_tokenizer chatbot.append((inputs, "")) if chatglm_model is None: chatbot[-1] = (inputs, "ChatGLM尚未加载,加载需要一段时间 ……") yield from update_ui(chatbot=chatbot, history=[]) model_loader() if additional_fn is not None: import core_functional importlib.reload(core_functional) # 热更新prompt core_functional = core_functional.get_core_functions() if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话) inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"] history_feedin = [] for i in range(len(history)//2): history_feedin.append(["What can I do?", system_prompt] ) history_feedin.append([history[2*i], history[2*i+1]] ) for response, history in chatglm_model.stream_chat(chatglm_tokenizer, inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): chatbot[-1] = (inputs, response) yield from update_ui(chatbot=chatbot, history=history)