import gradio as gr # import matplotlib.pyplot as plt import logging # logger = logging.getLogger(__name__) import os import json import math import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import commons import utils from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate from models import SynthesizerTrn from text.symbols import symbols from text import text_to_sequence import time def get_text(text, hps): # text_norm = requests.post("http://121.5.171.42:39001/texttosequence?text="+text).json()["text_norm"] text_norm = text_to_sequence(text, hps.data.text_cleaners) # print(hps.data.text_cleaners) # print(text_norm) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) return text_norm def load_model(config_path, pth_path): global dev, hps, net_g dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") hps = utils.get_hparams_from_file(config_path) net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model).to(dev) _ = net_g.eval() _ = utils.load_checkpoint(pth_path, net_g) print(f"{pth_path}加载成功!") def infer(c_name, text): c_id = character_dict[c_name] stn_tst = get_text(text, hps) with torch.no_grad(): x_tst = stn_tst.to(dev).unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev) sid = torch.LongTensor([c_id]).to(dev) audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy() return (hps.data.sampling_rate, audio) pth_path = "model/G_70000.pth" config_path = "configs/config.json" character_dict = { "夜刀神十香": 1, "鸢一折纸": 2, "时崎狂三": 3, "冰芽川四糸乃": 4, "五河琴里": 5, "八舞夕弦": 6, "八舞耶俱矢": 7, "诱宵美九": 8, "园神凛祢": 9, "园神凛绪": 11, "或守鞠亚": 12, "或守鞠奈": 13, "崇宫真那": 14, } load_model(config_path, pth_path) app = gr.Blocks() with app: with gr.Tabs(): with gr.Row(): text = gr.TextArea( label="请输入文本(仅支持日语)", value="こんにちは,世界!") with gr.Row(): radio = gr.Radio(list(character_dict.keys()), label="请选择角色") with gr.Row(): tts_submit = gr.Button("合成", variant="primary") with gr.Row(): tts_output = gr.Audio(label="Output") # model_submit.click(load_model, [config_path, pth_path]) tts_submit.click(infer, [radio, text], [tts_output]) radio.change(infer, [radio, text], [tts_output]) gr.HTML("""

这是一个使用thesupersonic16/DALTools提供的解包音频作为数据集, 使用VITS技术训练的语音合成demo(215k step)。

仅供学习交流,不可用于商业或非法用途
使用本项目模型直接或间接生成的音频,必须声明由AI技术或VITS技术合成
""") app.launch()