"""This script contains basic utilities for Deep3DFaceRecon_pytorch """ from __future__ import print_function import argparse import importlib import os from argparse import Namespace import numpy as np import torch import torchvision from PIL import Image def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") def copyconf(default_opt, **kwargs): conf = Namespace(**vars(default_opt)) for key in kwargs: setattr(conf, key, kwargs[key]) return conf def genvalconf(train_opt, **kwargs): conf = Namespace(**vars(train_opt)) attr_dict = train_opt.__dict__ for key, value in attr_dict.items(): if "val" in key and key.split("_")[0] in attr_dict: setattr(conf, key.split("_")[0], value) for key in kwargs: setattr(conf, key, kwargs[key]) return conf def find_class_in_module(target_cls_name, module): target_cls_name = target_cls_name.replace("_", "").lower() clslib = importlib.import_module(module) cls = None for name, clsobj in clslib.__dict__.items(): if name.lower() == target_cls_name: cls = clsobj assert ( cls is not None ), "In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % ( module, target_cls_name, ) return cls def tensor2im(input_image, imtype=np.uint8): """ "Converts a Tensor array into a numpy image array. Parameters: input_image (tensor) -- the input image tensor array, range(0, 1) imtype (type) -- the desired type of the converted numpy array """ if not isinstance(input_image, np.ndarray): if isinstance(input_image, torch.Tensor): # get the data from a variable image_tensor = input_image.data else: return input_image image_numpy = image_tensor.clamp(0.0, 1.0).cpu().float().numpy() # convert it into a numpy array if image_numpy.shape[0] == 1: # grayscale to RGB image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 # post-processing: tranpose and scaling else: # if it is a numpy array, do nothing image_numpy = input_image return image_numpy.astype(imtype) def diagnose_network(net, name="network"): """Calculate and print the mean of average absolute(gradients) Parameters: net (torch network) -- Torch network name (str) -- the name of the network """ mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path, aspect_ratio=1.0): """Save a numpy image to the disk Parameters: image_numpy (numpy array) -- input numpy array image_path (str) -- the path of the image """ image_pil = Image.fromarray(image_numpy) h, w, _ = image_numpy.shape if aspect_ratio is None: pass elif aspect_ratio > 1.0: image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.Resampling.BICUBIC) elif aspect_ratio < 1.0: image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.Resampling.BICUBIC) image_pil.save(image_path) def print_numpy(x, val=True, shp=False): """Print the mean, min, max, median, std, and size of a numpy array Parameters: val (bool) -- if print the values of the numpy array shp (bool) -- if print the shape of the numpy array """ x = x.astype(np.float64) if shp: print("shape,", x.shape) if val: x = x.flatten() print( "mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f" % (np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)) ) def mkdirs(paths): """create empty directories if they don't exist Parameters: paths (str list) -- a list of directory paths """ if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): """create a single empty directory if it didn't exist Parameters: path (str) -- a single directory path """ if not os.path.exists(path): os.makedirs(path) def correct_resize_label(t, size): device = t.device t = t.detach().cpu() resized = [] for i in range(t.size(0)): one_t = t[i, :1] one_np = np.transpose(one_t.numpy().astype(np.uint8), (1, 2, 0)) one_np = one_np[:, :, 0] one_image = Image.fromarray(one_np).resize(size, Image.NEAREST) resized_t = torch.from_numpy(np.array(one_image)).long() resized.append(resized_t) return torch.stack(resized, dim=0).to(device) def correct_resize(t, size, mode=Image.Resampling.BICUBIC): device = t.device t = t.detach().cpu() resized = [] for i in range(t.size(0)): one_t = t[i : i + 1] one_image = Image.fromarray(tensor2im(one_t)).resize(size, Image.Resampling.BICUBIC) resized_t = torchvision.transforms.functional.to_tensor(one_image) * 2 - 1.0 resized.append(resized_t) return torch.stack(resized, dim=0).to(device) def draw_landmarks(img, landmark, color="r", step=2): """ Return: img -- numpy.array, (B, H, W, 3) img with landmark, RGB order, range (0, 255) Parameters: img -- numpy.array, (B, H, W, 3), RGB order, range (0, 255) landmark -- numpy.array, (B, 68, 2), y direction is opposite to v direction color -- str, 'r' or 'b' (red or blue) """ if color == "r": c = np.array([255.0, 0, 0]) else: c = np.array([0, 0, 255.0]) _, H, W, _ = img.shape img, landmark = img.copy(), landmark.copy() landmark[..., 1] = H - 1 - landmark[..., 1] landmark = np.round(landmark).astype(np.int32) for i in range(landmark.shape[1]): x, y = landmark[:, i, 0], landmark[:, i, 1] for j in range(-step, step): for k in range(-step, step): u = np.clip(x + j, 0, W - 1) v = np.clip(y + k, 0, H - 1) for m in range(landmark.shape[0]): img[m, v[m], u[m]] = c return img