import os from shutil import move import cv2 import numpy as np import tensorflow as tf from scipy.io import loadmat from util.preprocess import align_for_lm mean_face = np.loadtxt("util/test_mean_face.txt") mean_face = mean_face.reshape([68, 2]) def save_label(labels, save_path): np.savetxt(save_path, labels) def draw_landmarks(img, landmark, save_name): landmark = landmark lm_img = np.zeros([img.shape[0], img.shape[1], 3]) lm_img[:] = img.astype(np.float32) landmark = np.round(landmark).astype(np.int32) for i in range(len(landmark)): for j in range(-1, 1): for k in range(-1, 1): if ( img.shape[0] - 1 - landmark[i, 1] + j > 0 and img.shape[0] - 1 - landmark[i, 1] + j < img.shape[0] and landmark[i, 0] + k > 0 and landmark[i, 0] + k < img.shape[1] ): lm_img[img.shape[0] - 1 - landmark[i, 1] + j, landmark[i, 0] + k, :] = np.array([0, 0, 255]) lm_img = lm_img.astype(np.uint8) cv2.imwrite(save_name, lm_img) def load_data(img_name, txt_name): return cv2.imread(img_name), np.loadtxt(txt_name) # create tensorflow graph for landmark detector def load_lm_graph(graph_filename): with tf.gfile.GFile(graph_filename, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) with tf.Graph().as_default() as graph: tf.import_graph_def(graph_def, name="net") img_224 = graph.get_tensor_by_name("net/input_imgs:0") output_lm = graph.get_tensor_by_name("net/lm:0") lm_sess = tf.Session(graph=graph) return lm_sess, img_224, output_lm # landmark detection def detect_68p(img_path, sess, input_op, output_op): print("detecting landmarks......") names = [i for i in sorted(os.listdir(img_path)) if "jpg" in i or "png" in i or "jpeg" in i or "PNG" in i] vis_path = os.path.join(img_path, "vis") remove_path = os.path.join(img_path, "remove") save_path = os.path.join(img_path, "landmarks") if not os.path.isdir(vis_path): os.makedirs(vis_path) if not os.path.isdir(remove_path): os.makedirs(remove_path) if not os.path.isdir(save_path): os.makedirs(save_path) for i in range(0, len(names)): name = names[i] print("%05d" % (i), " ", name) full_image_name = os.path.join(img_path, name) txt_name = ".".join(name.split(".")[:-1]) + ".txt" full_txt_name = os.path.join(img_path, "detections", txt_name) # 5 facial landmark path for each image # if an image does not have detected 5 facial landmarks, remove it from the training list if not os.path.isfile(full_txt_name): move(full_image_name, os.path.join(remove_path, name)) continue # load data img, five_points = load_data(full_image_name, full_txt_name) input_img, scale, bbox = align_for_lm(img, five_points) # align for 68 landmark detection # if the alignment fails, remove corresponding image from the training list if scale == 0: move(full_txt_name, os.path.join(remove_path, txt_name)) move(full_image_name, os.path.join(remove_path, name)) continue # detect landmarks input_img = np.reshape(input_img, [1, 224, 224, 3]).astype(np.float32) landmark = sess.run(output_op, feed_dict={input_op: input_img}) # transform back to original image coordinate landmark = landmark.reshape([68, 2]) + mean_face landmark[:, 1] = 223 - landmark[:, 1] landmark = landmark / scale landmark[:, 0] = landmark[:, 0] + bbox[0] landmark[:, 1] = landmark[:, 1] + bbox[1] landmark[:, 1] = img.shape[0] - 1 - landmark[:, 1] if i % 100 == 0: draw_landmarks(img, landmark, os.path.join(vis_path, name)) save_label(landmark, os.path.join(save_path, txt_name))