"""This script is the test script for Deep3DFaceRecon_pytorch """ import os import numpy as np import torch from data import create_dataset from data.flist_dataset import default_flist_reader from options.test_options import TestOptions from PIL import Image from scipy.io import loadmat from scipy.io import savemat from util.load_mats import load_lm3d from util.preprocess import align_img from util.visualizer import MyVisualizer from models import create_model def get_data_path(root="examples"): im_path = [os.path.join(root, i) for i in sorted(os.listdir(root)) if i.endswith("png") or i.endswith("jpg")] lm_path = [i.replace("png", "txt").replace("jpg", "txt") for i in im_path] lm_path = [ os.path.join(i.replace(i.split(os.path.sep)[-1], ""), "detections", i.split(os.path.sep)[-1]) for i in lm_path ] return im_path, lm_path def read_data(im_path, lm_path, lm3d_std, to_tensor=True): # to RGB im = Image.open(im_path).convert("RGB") W, H = im.size lm = np.loadtxt(lm_path).astype(np.float32) lm = lm.reshape([-1, 2]) lm[:, -1] = H - 1 - lm[:, -1] _, im, lm, _ = align_img(im, lm, lm3d_std) if to_tensor: im = torch.tensor(np.array(im) / 255.0, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0) lm = torch.tensor(lm).unsqueeze(0) return im, lm def main(rank, opt, name="examples"): device = torch.device(rank) torch.cuda.set_device(device) model = create_model(opt) model.setup(opt) model.device = device model.parallelize() model.eval() visualizer = MyVisualizer(opt) im_path, lm_path = get_data_path(name) lm3d_std = load_lm3d(opt.bfm_folder) for i in range(len(im_path)): print(i, im_path[i]) img_name = im_path[i].split(os.path.sep)[-1].replace(".png", "").replace(".jpg", "") if not os.path.isfile(lm_path[i]): print("%s is not found !!!" % lm_path[i]) continue im_tensor, lm_tensor = read_data(im_path[i], lm_path[i], lm3d_std) data = {"imgs": im_tensor, "lms": lm_tensor} model.set_input(data) # unpack data from data loader model.test() # run inference visuals = model.get_current_visuals() # get image results visualizer.display_current_results( visuals, 0, opt.epoch, dataset=name.split(os.path.sep)[-1], save_results=True, count=i, name=img_name, add_image=False, ) model.save_mesh( os.path.join( visualizer.img_dir, name.split(os.path.sep)[-1], "epoch_%s_%06d" % (opt.epoch, 0), img_name + ".obj" ) ) # save reconstruction meshes model.save_coeff( os.path.join( visualizer.img_dir, name.split(os.path.sep)[-1], "epoch_%s_%06d" % (opt.epoch, 0), img_name + ".mat" ) ) # save predicted coefficients if __name__ == "__main__": opt = TestOptions().parse() # get test options main(0, opt, opt.img_folder)