"""This script is the data preparation script for Deep3DFaceRecon_pytorch """ import argparse import os import warnings import numpy as np from util.detect_lm68 import detect_68p from util.detect_lm68 import load_lm_graph from util.generate_list import check_list from util.generate_list import write_list from util.skin_mask import get_skin_mask warnings.filterwarnings("ignore") parser = argparse.ArgumentParser() parser.add_argument("--data_root", type=str, default="datasets", help="root directory for training data") parser.add_argument("--img_folder", nargs="+", required=True, help="folders of training images") parser.add_argument("--mode", type=str, default="train", help="train or val") opt = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = "0" def data_prepare(folder_list, mode): lm_sess, input_op, output_op = load_lm_graph( "./checkpoints/lm_model/68lm_detector.pb" ) # load a tensorflow version 68-landmark detector for img_folder in folder_list: detect_68p(img_folder, lm_sess, input_op, output_op) # detect landmarks for images get_skin_mask(img_folder) # generate skin attention mask for images # create files that record path to all training data msks_list = [] for img_folder in folder_list: path = os.path.join(img_folder, "mask") msks_list += [ "/".join([img_folder, "mask", i]) for i in sorted(os.listdir(path)) if "jpg" in i or "png" in i or "jpeg" in i or "PNG" in i ] imgs_list = [i.replace("mask/", "") for i in msks_list] lms_list = [i.replace("mask", "landmarks") for i in msks_list] lms_list = [".".join(i.split(".")[:-1]) + ".txt" for i in lms_list] lms_list_final, imgs_list_final, msks_list_final = check_list( lms_list, imgs_list, msks_list ) # check if the path is valid write_list(lms_list_final, imgs_list_final, msks_list_final, mode=mode) # save files if __name__ == "__main__": print("Datasets:", opt.img_folder) data_prepare([os.path.join(opt.data_root, folder) for folder in opt.img_folder], opt.mode)