import torch from torch.nn import init def init_weights(net, init_type="normal", init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, "weight") and (classname.find("Conv") != -1 or classname.find("Linear") != -1): if init_type == "normal": init.normal_(m.weight.data, 0.0, init_gain) elif init_type == "xavier": init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == "kaiming": init.kaiming_normal_(m.weight.data, a=0, mode="fan_in") elif init_type == "orthogonal": init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError("initialization method [%s] is not implemented" % init_type) if hasattr(m, "bias") and m.bias is not None: init.constant_(m.bias.data, 0.0) elif ( classname.find("BatchNorm2d") != -1 ): # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) # print("initialize network with %s" % init_type) net.apply(init_func) # apply the initialization function def init_net(net, init_type="normal", init_gain=0.02, gpu_ids=[]): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert torch.cuda.is_available() net.to(gpu_ids[0]) # net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs init_weights(net, init_type, init_gain=init_gain) return net