#!/usr/bin/env python from __future__ import annotations import os import random import tempfile import gradio as gr import imageio import numpy as np import spaces import torch from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler DESCRIPTION = "# zeroscope v2" if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" MAX_NUM_FRAMES = int(os.getenv("MAX_NUM_FRAMES", "200")) DEFAULT_NUM_FRAMES = min(MAX_NUM_FRAMES, int(os.getenv("DEFAULT_NUM_FRAMES", "24"))) MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" if torch.cuda.is_available(): pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.enable_vae_slicing() else: pipe = None def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def to_video(frames: list[np.ndarray], fps: int) -> str: out_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) writer = imageio.get_writer(out_file.name, format="FFMPEG", fps=fps) for frame in frames: writer.append_data(frame) writer.close() return out_file.name @spaces.GPU def generate( prompt: str, seed: int, num_frames: int, num_inference_steps: int, progress=gr.Progress(track_tqdm=True), ) -> str: generator = torch.Generator().manual_seed(seed) frames = pipe( prompt, num_inference_steps=num_inference_steps, num_frames=num_frames, width=576, height=320, generator=generator, ).frames return to_video(frames, 8) examples = [ ["An astronaut riding a horse", 0, 24, 25], ["A panda eating bamboo on a rock", 0, 24, 25], ["Spiderman is surfing", 0, 24, 25], ] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Generate video", scale=0) result = gr.Video(label="Result", show_label=False) with gr.Accordion("Advanced options", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) num_frames = gr.Slider( label="Number of frames", minimum=24, maximum=MAX_NUM_FRAMES, step=1, value=24, info="Note that the content of the video also changes when you change the number of frames.", ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=10, maximum=50, step=1, value=25, ) inputs = [ prompt, seed, num_frames, num_inference_steps, ] gr.Examples( examples=examples, inputs=inputs, outputs=result, fn=generate, cache_examples=CACHE_EXAMPLES, ) gr.on( triggers=[prompt.submit, run_button.click], fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name="run", ) if __name__ == "__main__": demo.queue(max_size=10).launch()