#!/usr/bin/env python from __future__ import annotations import functools import os import pickle import sys import gradio as gr import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download sys.path.insert(0, 'stylegan3') TITLE = 'StyleGAN3 Anime Face Generation' MODEL_REPO = 'hysts/stylegan3-anime-face-exp001-model' MODEL_FILE_NAME = '006600.pkl' HF_TOKEN = os.getenv('HF_TOKEN') def make_transform(translate: tuple[float, float], angle: float) -> np.ndarray: mat = np.eye(3) sin = np.sin(angle / 360 * np.pi * 2) cos = np.cos(angle / 360 * np.pi * 2) mat[0][0] = cos mat[0][1] = sin mat[0][2] = translate[0] mat[1][0] = -sin mat[1][1] = cos mat[1][2] = translate[1] return mat def generate_z(seed: int, device: torch.device) -> torch.Tensor: return torch.from_numpy(np.random.RandomState(seed).randn(1, 512)).to(device) @torch.inference_mode() def generate_image(seed: int, truncation_psi: float, tx: float, ty: float, angle: float, model: nn.Module, device: torch.device) -> np.ndarray: seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) z = generate_z(seed, device) c = torch.zeros(0).to(device) mat = make_transform((tx, ty), angle) mat = np.linalg.inv(mat) model.synthesis.input.transform.copy_(torch.from_numpy(mat)) out = model(z, c, truncation_psi=truncation_psi) out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) return out[0].cpu().numpy() def load_model(device: torch.device) -> nn.Module: path = hf_hub_download(MODEL_REPO, MODEL_FILE_NAME, use_auth_token=HF_TOKEN) with open(path, 'rb') as f: model = pickle.load(f) model.eval() model.to(device) with torch.inference_mode(): z = torch.zeros((1, 512)).to(device) c = torch.zeros(0).to(device) model(z, c) return model device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = load_model(device) func = functools.partial(generate_image, model=model, device=device) gr.Interface( fn=func, inputs=[ gr.Slider(label='Seed', minimum=0, maximum=np.iinfo(np.uint32).max, step=1, value=3407851645), gr.Slider(label='Truncation psi', minimum=0, maximum=2, step=0.05, value=0.7), gr.Slider(label='Translate X', minimum=-1, maximum=1, step=0.05, value=0), gr.Slider(label='Translate Y', minimum=-1, maximum=1, step=0.05, value=0), gr.Slider(label='Angle', minimum=-180, maximum=180, step=5, value=0), ], outputs=gr.Image(label='Output', type='numpy'), title=TITLE, ).queue().launch(show_api=False)