#!/usr/bin/env python from __future__ import annotations import argparse import functools import os import pickle import sys import gradio as gr import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download sys.path.insert(0, 'projected_gan') TITLE = 'autonomousvision/projected_gan' DESCRIPTION = '''This is a demo for https://github.com/autonomousvision/projected_gan. Expected execution time on Hugging Face Spaces: 1s ''' SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/projected_gan/resolve/main/samples' ARTICLE = f'''## Generated images - truncation: 0.7 - size: 256x256 - seed: 0-99 ### Art painting ![Art painting samples]({SAMPLE_IMAGE_DIR}/art_painting.jpg) ### Bedroom ![Bedroom samples]({SAMPLE_IMAGE_DIR}/bedroom.jpg) ### Church ![Church samples]({SAMPLE_IMAGE_DIR}/church.jpg) ### Cityscapes ![Cityscapes samples]({SAMPLE_IMAGE_DIR}/cityscapes.jpg) ### CLEVR ![CLEVR samples]({SAMPLE_IMAGE_DIR}/clevr.jpg) ### FFHQ ![FFHQ samples]({SAMPLE_IMAGE_DIR}/ffhq.jpg) ### Flowers ![Flowers samples]({SAMPLE_IMAGE_DIR}/flowers.jpg) ### Landscape ![Landscape samples]({SAMPLE_IMAGE_DIR}/landscape.jpg) ### Pokemon ![Pokemon samples]({SAMPLE_IMAGE_DIR}/pokemon.jpg)
visitor badge
''' TOKEN = os.environ['TOKEN'] def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--theme', type=str) parser.add_argument('--live', action='store_true') parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') parser.add_argument('--allow-flagging', type=str, default='never') return parser.parse_args() def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: return torch.from_numpy( np.random.RandomState(seed).randn(1, z_dim).astype(np.float32)).to(device) @torch.inference_mode() def generate_image(model_name: str, seed: int, truncation_psi: float, model_dict: dict[str, nn.Module], device: torch.device) -> np.ndarray: model = model_dict[model_name] seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) z = generate_z(model.z_dim, seed, device) label = torch.zeros([1, model.c_dim], device=device) out = model(z, label, truncation_psi=truncation_psi) out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) return out[0].cpu().numpy() def load_model(model_name: str, device: torch.device) -> nn.Module: path = hf_hub_download('hysts/projected_gan', f'models/{model_name}.pkl', use_auth_token=TOKEN) with open(path, 'rb') as f: model = pickle.load(f)['G_ema'] model.eval() model.to(device) with torch.inference_mode(): z = torch.zeros((1, model.z_dim)).to(device) label = torch.zeros([1, model.c_dim], device=device) model(z, label) return model def main(): args = parse_args() device = torch.device(args.device) model_names = [ 'art_painting', 'church', 'bedroom', 'cityscapes', 'clevr', 'ffhq', 'flowers', 'landscape', 'pokemon', ] model_dict = {name: load_model(name, device) for name in model_names} func = functools.partial(generate_image, model_dict=model_dict, device=device) func = functools.update_wrapper(func, generate_image) gr.Interface( func, [ gr.inputs.Radio( model_names, type='value', default='pokemon', label='Model'), gr.inputs.Number(default=0, label='Seed'), gr.inputs.Slider( 0, 2, step=0.05, default=0.7, label='Truncation psi'), ], gr.outputs.Image(type='numpy', label='Output'), title=TITLE, description=DESCRIPTION, article=ARTICLE, theme=args.theme, allow_flagging=args.allow_flagging, live=args.live, ).launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()