#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pickle
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
sys.path.insert(0, 'projected_gan')
TITLE = 'autonomousvision/projected_gan'
DESCRIPTION = '''This is a demo for https://github.com/autonomousvision/projected_gan.
Expected execution time on Hugging Face Spaces: 1s
'''
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/projected_gan/resolve/main/samples'
ARTICLE = f'''## Generated images
- truncation: 0.7
- size: 256x256
- seed: 0-99
### Art painting
![Art painting samples]({SAMPLE_IMAGE_DIR}/art_painting.jpg)
### Bedroom
![Bedroom samples]({SAMPLE_IMAGE_DIR}/bedroom.jpg)
### Church
![Church samples]({SAMPLE_IMAGE_DIR}/church.jpg)
### Cityscapes
![Cityscapes samples]({SAMPLE_IMAGE_DIR}/cityscapes.jpg)
### CLEVR
![CLEVR samples]({SAMPLE_IMAGE_DIR}/clevr.jpg)
### FFHQ
![FFHQ samples]({SAMPLE_IMAGE_DIR}/ffhq.jpg)
### Flowers
![Flowers samples]({SAMPLE_IMAGE_DIR}/flowers.jpg)
### Landscape
![Landscape samples]({SAMPLE_IMAGE_DIR}/landscape.jpg)
### Pokemon
![Pokemon samples]({SAMPLE_IMAGE_DIR}/pokemon.jpg)
'''
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
return parser.parse_args()
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(
np.random.RandomState(seed).randn(1,
z_dim).astype(np.float32)).to(device)
@torch.inference_mode()
def generate_image(model_name: str, seed: int, truncation_psi: float,
model_dict: dict[str, nn.Module],
device: torch.device) -> np.ndarray:
model = model_dict[model_name]
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(model.z_dim, seed, device)
label = torch.zeros([1, model.c_dim], device=device)
out = model(z, label, truncation_psi=truncation_psi)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
def load_model(model_name: str, device: torch.device) -> nn.Module:
path = hf_hub_download('hysts/projected_gan',
f'models/{model_name}.pkl',
use_auth_token=TOKEN)
with open(path, 'rb') as f:
model = pickle.load(f)['G_ema']
model.eval()
model.to(device)
with torch.inference_mode():
z = torch.zeros((1, model.z_dim)).to(device)
label = torch.zeros([1, model.c_dim], device=device)
model(z, label)
return model
def main():
args = parse_args()
device = torch.device(args.device)
model_names = [
'art_painting',
'church',
'bedroom',
'cityscapes',
'clevr',
'ffhq',
'flowers',
'landscape',
'pokemon',
]
model_dict = {name: load_model(name, device) for name in model_names}
func = functools.partial(generate_image,
model_dict=model_dict,
device=device)
func = functools.update_wrapper(func, generate_image)
gr.Interface(
func,
[
gr.inputs.Radio(
model_names, type='value', default='pokemon', label='Model'),
gr.inputs.Number(default=0, label='Seed'),
gr.inputs.Slider(
0, 2, step=0.05, default=0.7, label='Truncation psi'),
],
gr.outputs.Image(type='numpy', label='Output'),
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()