#!/usr/bin/env python from __future__ import annotations import os import pathlib import sys import gradio as gr import numpy as np import spaces import torch from huggingface_hub import hf_hub_download sys.path.insert(0, "face_detection") sys.path.insert(0, "face_parsing") sys.path.insert(0, "roi_tanh_warping") from ibug.face_detection import RetinaFacePredictor from ibug.face_parsing.parser import WEIGHT, FaceParser from ibug.face_parsing.utils import label_colormap DESCRIPTION = "# [hhj1897/face_parsing](https://github.com/hhj1897/face_parsing)" def is_lfs_pointer_file(path: pathlib.Path) -> bool: try: with open(path, "r") as f: # Git LFS pointer files usually start with version line version_line = f.readline() if version_line.startswith("version https://git-lfs.github.com/spec/"): # Check for the presence of oid and size lines oid_line = f.readline() size_line = f.readline() if oid_line.startswith("oid sha256:") and size_line.startswith("size "): return True except Exception as e: print(f"Error reading file {path}: {e}") return False lfs_model_paths = sorted(pathlib.Path("face_parsing").rglob("*.torch")) for lfs_model_path in lfs_model_paths: if is_lfs_pointer_file(lfs_model_path): os.remove(lfs_model_path) out_path = hf_hub_download( "public-data/ibug-face-parsing", filename=lfs_model_path.name, repo_type="model", subfolder=lfs_model_path.parts[-3], ) os.symlink(out_path, lfs_model_path) def load_model(model_name: str, device: torch.device) -> FaceParser: encoder, decoder, num_classes = model_name.split("-") num_classes = int(num_classes) # type: ignore model = FaceParser(device=device, encoder=encoder, decoder=decoder, num_classes=num_classes) model.num_classes = num_classes return model device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") detector = RetinaFacePredictor(threshold=0.8, device="cpu", model=RetinaFacePredictor.get_model("mobilenet0.25")) detector.device = device detector.net.to(device) model_names = list(WEIGHT.keys()) models = {name: load_model(name, device=device) for name in model_names} @spaces.GPU def predict(image: np.ndarray, model_name: str, max_num_faces: int) -> np.ndarray: model = models[model_name] colormap = label_colormap(model.num_classes) # RGB -> BGR image = image[:, :, ::-1] faces = detector(image, rgb=False) if len(faces) == 0: raise RuntimeError("No face was found.") faces = sorted(list(faces), key=lambda x: -x[4])[:max_num_faces][::-1] masks = model.predict_img(image, faces, rgb=False) mask_image = np.zeros_like(image) for mask in masks: temp = colormap[mask] mask_image[temp > 0] = temp[temp > 0] res = image.astype(float) * 0.5 + mask_image[:, :, ::-1] * 0.5 res = np.clip(np.round(res), 0, 255).astype(np.uint8) return res[:, :, ::-1] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): image = gr.Image(type="numpy", label="Input") model_name = gr.Radio(choices=model_names, type="value", value=model_names[1], label="Model") max_num_faces = gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Max Number of Faces") run_button = gr.Button() with gr.Column(): result = gr.Image(label="Output") gr.Examples( examples=[[path.as_posix(), model_names[1], 10] for path in pathlib.Path("images").rglob("*.jpg")], inputs=[image, model_name, max_num_faces], outputs=result, fn=predict, ) run_button.click( fn=predict, inputs=[image, model_name, max_num_faces], outputs=result, api_name="predict", ) if __name__ == "__main__": demo.queue(max_size=20).launch()