#!/usr/bin/env python from __future__ import annotations import argparse import functools import os import pathlib import subprocess import sys import tarfile from typing import Callable # workaround for https://github.com/gradio-app/gradio/issues/483 command = 'pip install -U gradio==2.7.0' subprocess.call(command.split()) import gradio as gr import huggingface_hub import numpy as np import PIL.Image import torch import torch.nn as nn import torchvision import torchvision.transforms as T sys.path.insert(0, 'bizarre-pose-estimator') from _util.twodee_v0 import I as ImageWrapper TOKEN = os.environ['TOKEN'] MODEL_REPO = 'hysts/bizarre-pose-estimator-models' MODEL_FILENAME = 'segmenter.pth' def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--score-slider-step', type=float, default=0.05) parser.add_argument('--score-threshold', type=float, default=0.5) parser.add_argument('--theme', type=str) parser.add_argument('--live', action='store_true') parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') parser.add_argument('--allow-flagging', type=str, default='never') parser.add_argument('--allow-screenshot', action='store_true') return parser.parse_args() def load_sample_image_paths() -> list[pathlib.Path]: image_dir = pathlib.Path('images') if not image_dir.exists(): dataset_repo = 'hysts/sample-images-TADNE' path = huggingface_hub.hf_hub_download(dataset_repo, 'images.tar.gz', repo_type='dataset', use_auth_token=TOKEN) with tarfile.open(path) as f: f.extractall() return sorted(image_dir.glob('*')) def load_model( device: torch.device) -> tuple[torch.nn.Module, torch.nn.Module]: path = huggingface_hub.hf_hub_download(MODEL_REPO, MODEL_FILENAME, use_auth_token=TOKEN) ckpt = torch.load(path) model = torchvision.models.segmentation.deeplabv3_resnet101() model.classifier = nn.Sequential( torchvision.models.segmentation.deeplabv3.ASPP(2048, [12, 24, 36]), nn.Conv2d(256, 64, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(), nn.Conv2d(64, 16, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(16), nn.LeakyReLU(), ) final_head = nn.Sequential( nn.Conv2d(16 + 3, 16, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(16), nn.LeakyReLU(), nn.Conv2d(16, 8, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(8), nn.LeakyReLU(), nn.Conv2d(8, 2, kernel_size=1, stride=1), ) model.load_state_dict(ckpt['model']) final_head.load_state_dict(ckpt['final_head']) model.to(device) model.eval() final_head.to(device) final_head.eval() return model, final_head @torch.inference_mode() def predict(image: PIL.Image.Image, score_threshold: float, transform: Callable, device: torch.device, model: torch.nn.Module, final_head: torch.nn.Module) -> np.ndarray: data = ImageWrapper(image).resize_min(256).convert('RGBA').alpha_bg( 1).convert('RGB').pil() data = torchvision.transforms.functional.to_tensor(data) data = transform(data) data = data.to(device).unsqueeze(0) out = model(data)['out'] out_fin = final_head(torch.cat([ out, data, ], dim=1)) probs = torch.softmax(out_fin, dim=1)[0] probs = probs[1] # foreground probs = PIL.Image.fromarray(probs.cpu().numpy()).resize(image.size) mask = np.asarray(probs) mask[mask < score_threshold] = 0 mask[mask > 0] = 1 mask = mask.astype(bool) res = np.asarray(image) res[~mask] = 255 return res def main(): gr.close_all() args = parse_args() device = torch.device(args.device) image_paths = load_sample_image_paths() examples = [[path.as_posix(), args.score_threshold] for path in image_paths] model, final_head = load_model(device) transform = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) func = functools.partial(predict, transform=transform, device=device, model=model, final_head=final_head) func = functools.update_wrapper(func, predict) repo_url = 'https://github.com/ShuhongChen/bizarre-pose-estimator' title = 'ShuhongChen/bizarre-pose-estimator (segmenter)' description = f'A demo for {repo_url}' article = None gr.Interface( func, [ gr.inputs.Image(type='pil', label='Input'), gr.inputs.Slider(0, 1, step=args.score_slider_step, default=args.score_threshold, label='Score Threshold'), ], gr.outputs.Image(label='Masked'), theme=args.theme, title=title, description=description, article=article, examples=examples, allow_screenshot=args.allow_screenshot, allow_flagging=args.allow_flagging, live=args.live, ).launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()