#!/usr/bin/env python import functools import os import pathlib import cv2 import dlib import gradio as gr import huggingface_hub import numpy as np import pretrainedmodels import torch import torch.nn as nn import torch.nn.functional as F DESCRIPTION = "# [Age Estimation](https://github.com/yu4u/age-estimation-pytorch)" def get_model(model_name="se_resnext50_32x4d", num_classes=101, pretrained="imagenet"): model = pretrainedmodels.__dict__[model_name](pretrained=pretrained) dim_feats = model.last_linear.in_features model.last_linear = nn.Linear(dim_feats, num_classes) model.avg_pool = nn.AdaptiveAvgPool2d(1) return model def load_model(device): model = get_model(model_name="se_resnext50_32x4d", pretrained=None) path = huggingface_hub.hf_hub_download("public-data/yu4u-age-estimation-pytorch", "pretrained.pth") model.load_state_dict(torch.load(path)) model = model.to(device) model.eval() return model def load_image(path): image = cv2.imread(path) h_orig, w_orig = image.shape[:2] size = max(h_orig, w_orig) scale = 640 / size w, h = int(w_orig * scale), int(h_orig * scale) image = cv2.resize(image, (w, h)) return image def draw_label(image, point, label, font=cv2.FONT_HERSHEY_SIMPLEX, font_scale=0.8, thickness=1): size = cv2.getTextSize(label, font, font_scale, thickness)[0] x, y = point cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0), cv2.FILLED) cv2.putText(image, label, point, font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA) @torch.inference_mode() def predict(image, model, face_detector, device, margin=0.4, input_size=224): image = cv2.imread(image, cv2.IMREAD_COLOR)[:, :, ::-1].copy() image_h, image_w = image.shape[:2] # detect faces using dlib detector detected = face_detector(image, 1) faces = np.empty((len(detected), input_size, input_size, 3)) if len(detected) > 0: for i, d in enumerate(detected): x1, y1, x2, y2, w, h = d.left(), d.top(), d.right() + 1, d.bottom() + 1, d.width(), d.height() xw1 = max(int(x1 - margin * w), 0) yw1 = max(int(y1 - margin * h), 0) xw2 = min(int(x2 + margin * w), image_w - 1) yw2 = min(int(y2 + margin * h), image_h - 1) faces[i] = cv2.resize(image[yw1 : yw2 + 1, xw1 : xw2 + 1], (input_size, input_size)) cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 255), 2) cv2.rectangle(image, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2) # predict ages inputs = torch.from_numpy(np.transpose(faces.astype(np.float32), (0, 3, 1, 2))).to(device) outputs = F.softmax(model(inputs), dim=-1).cpu().numpy() ages = np.arange(0, 101) predicted_ages = (outputs * ages).sum(axis=-1) # draw results for age, d in zip(predicted_ages, detected): draw_label(image, (d.left(), d.top()), f"{int(age)}") return image device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = load_model(device) face_detector = dlib.get_frontal_face_detector() fn = functools.partial(predict, model=model, face_detector=face_detector, device=device) image_dir = pathlib.Path("sample_images") examples = [path.as_posix() for path in sorted(image_dir.glob("*.jpg"))] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): image = gr.Image(label="Input", type="filepath") run_button = gr.Button("Run") with gr.Column(): result = gr.Image(label="Result") gr.Examples( examples=examples, inputs=image, outputs=result, fn=fn, cache_examples=os.getenv("CACHE_EXAMPLES") == "1", ) run_button.click( fn=fn, inputs=image, outputs=result, api_name="predict", ) if __name__ == "__main__": demo.queue(max_size=15).launch()