#!/usr/bin/env python from __future__ import annotations import argparse import functools import os import pickle import sys import gradio as gr import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download sys.path.insert(0, 'StyleGAN-Human') TITLE = 'StyleGAN-Human (Interpolation)' DESCRIPTION = '''This is an unofficial demo for https://github.com/stylegan-human/StyleGAN-Human. (Expected Execution Time on Hugging Face Spaces: 0.8s for one image) Related App: [StyleGAN-Human](https://huggingface.co/spaces/hysts/StyleGAN-Human) ''' ARTICLE = None TOKEN = os.environ['TOKEN'] def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--theme', type=str) parser.add_argument('--live', action='store_true') parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') parser.add_argument('--allow-flagging', type=str, default='never') parser.add_argument('--allow-screenshot', action='store_true') return parser.parse_args() def load_model(file_name: str, device: torch.device) -> nn.Module: path = hf_hub_download('hysts/StyleGAN-Human', f'models/{file_name}', use_auth_token=TOKEN) with open(path, 'rb') as f: model = pickle.load(f)['G_ema'] model.eval() model.to(device) with torch.inference_mode(): z = torch.zeros((1, model.z_dim)).to(device) label = torch.zeros([1, model.c_dim], device=device) model(z, label, force_fp32=True) return model def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: return torch.from_numpy(np.random.RandomState(seed).randn( 1, z_dim)).to(device).float() @torch.inference_mode() def generate_interpolated_images( seed0: int, psi0: float, seed1: int, psi1: float, num_intermediate: int, model: nn.Module, device: torch.device) -> tuple[list[np.ndarray], np.ndarray]: seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max)) seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max)) z0 = generate_z(model.z_dim, seed0, device) z1 = generate_z(model.z_dim, seed1, device) vec = z1 - z0 dvec = vec / (num_intermediate + 1) zs = [z0 + dvec * i for i in range(num_intermediate + 2)] dpsi = (psi1 - psi0) / (num_intermediate + 1) psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)] label = torch.zeros([1, model.c_dim], device=device) res = [] for z, psi in zip(zs, psis): out = model(z, label, truncation_psi=psi, force_fp32=True) out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to( torch.uint8) out = out[0].cpu().numpy() res.append(out) concatenated = np.hstack(res) return res, concatenated def main(): args = parse_args() device = torch.device(args.device) model = load_model('stylegan_human_v2_1024.pkl', device) func = functools.partial(generate_interpolated_images, model=model, device=device) func = functools.update_wrapper(func, generate_interpolated_images) gr.Interface( func, [ gr.inputs.Number(default=0, label='Seed 1'), gr.inputs.Slider( 0, 2, step=0.05, default=0.7, label='Truncation psi 1'), gr.inputs.Number(default=1, label='Seed 2'), gr.inputs.Slider( 0, 2, step=0.05, default=0.7, label='Truncation psi 2'), gr.inputs.Slider(0, 21, step=1, default=7, label='Number of Intermediate Frames'), ], [ gr.outputs.Carousel(gr.outputs.Image(type='numpy'), label='Output Images'), gr.outputs.Image(type='numpy', label='Concatenated'), ], title=TITLE, description=DESCRIPTION, article=ARTICLE, theme=args.theme, allow_screenshot=args.allow_screenshot, allow_flagging=args.allow_flagging, live=args.live, ).launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()