from __future__ import annotations import pathlib import sys import cv2 import huggingface_hub import numpy as np import torch import torch.nn as nn current_dir = pathlib.Path(__file__).parent submodule_dir = current_dir / "MangaLineExtraction_PyTorch" sys.path.insert(0, submodule_dir.as_posix()) from model_torch import res_skip MAX_SIZE = 1000 class Model: def __init__(self): self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model = self._load_model() def _load_model(self) -> nn.Module: ckpt_path = huggingface_hub.hf_hub_download("public-data/MangaLineExtraction_PyTorch", "erika.pth") state_dict = torch.load(ckpt_path) model = res_skip() model.load_state_dict(state_dict) model.to(self.device) model.eval() return model @torch.inference_mode() def predict(self, image: np.ndarray) -> np.ndarray: gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) if max(gray.shape) > MAX_SIZE: scale = MAX_SIZE / max(gray.shape) gray = cv2.resize(gray, None, fx=scale, fy=scale) h, w = gray.shape size = 16 new_w = (w + size - 1) // size * size new_h = (h + size - 1) // size * size patch = np.ones((1, 1, new_h, new_w), dtype=np.float32) patch[0, 0, :h, :w] = gray tensor = torch.from_numpy(patch).to(self.device) out = self.model(tensor) res = out.cpu().numpy()[0, 0, :h, :w] res = np.clip(res, 0, 255).astype(np.uint8) return res