#!/usr/bin/env python from __future__ import annotations import os import random import gradio as gr import numpy as np import PIL.Image import spaces import torch from diffusers import DDPMScheduler, DiffusionPipeline DESCRIPTION = "# Kandinsky 2.1" if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): pipe_prior = DiffusionPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ) pipe_prior.to(device) scheduler = DDPMScheduler.from_pretrained("kandinsky-community/kandinsky-2-1", subfolder="ddpm_scheduler") pipe = DiffusionPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1", scheduler=scheduler, torch_dtype=torch.float16 ) pipe.to(device) if USE_TORCH_COMPILE: pipe.unet.to(memory_format=torch.channels_last) pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) else: pipe_prior = None pipe = None def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU def generate( prompt: str, negative_prompt: str = "low quality, bad quality", seed: int = 0, width: int = 768, height: int = 768, guidance_scale_prior: float = 1.0, guidance_scale: float = 4.0, num_inference_steps_prior: int = 50, num_inference_steps: int = 100, ) -> PIL.Image.Image: generator = torch.Generator().manual_seed(seed) image_embeds, negative_image_embeds = pipe_prior( prompt, negative_prompt, generator=generator, guidance_scale=guidance_scale_prior, num_inference_steps=num_inference_steps_prior, ).to_tuple() image = pipe( prompt=prompt, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=height, width=width, generator=generator, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, ).images[0] return image examples = [ "An astronaut riding a horse", "portrait of a young woman, blue eyes, cinematic", "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting", "bird eye view shot of a full body woman with cyan light orange magenta makeup, digital art, long braided hair her face separated by makeup in the style of yin Yang surrealism, symmetrical face, real image, contrasting tone, pastel gradient background", "A car exploding into colorful dust", "editorial photography of an organic, almost liquid smoke style armchair", "birds eye view of a quilted paper style alien planet landscape, vibrant colours, Cinematic lighting", ] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Box(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced options", open=False): negative_prompt = gr.Text( label="Negative prompt", value="low quality, bad quality", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768, ) guidance_scale_prior = gr.Slider( label="Guidance scale for prior", minimum=1, maximum=20, step=0.1, value=4.0, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=1, maximum=20, step=0.1, value=4.0, ) num_inference_steps_prior = gr.Slider( label="Number of inference steps for prior", minimum=10, maximum=100, step=1, value=50, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=10, maximum=150, step=1, value=100, ) gr.Examples( examples=examples, inputs=prompt, outputs=result, fn=generate, cache_examples=CACHE_EXAMPLES, ) inputs = [ prompt, negative_prompt, seed, width, height, guidance_scale_prior, guidance_scale, num_inference_steps_prior, num_inference_steps, ] prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name="run", ) negative_prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name=False, ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name=False, ) if __name__ == "__main__": demo.queue(max_size=20).launch()