import streamlit as st def get_openai_token_usage(metadata: dict, model_info: dict): input_tokens = metadata["token_usage"]["prompt_tokens"] output_tokens = metadata["token_usage"]["completion_tokens"] cost = ( input_tokens * 1e-6 * model_info["cost"]["pmi"] + output_tokens * 1e-6 * model_info["cost"]["pmo"] ) return { "input_tokens": input_tokens, "output_tokens": output_tokens, "cost": cost, } def get_anthropic_token_usage(metadata: dict, model_info: dict): input_tokens = metadata["usage"]["input_tokens"] output_tokens = metadata["usage"]["output_tokens"] cost = ( input_tokens * 1e-6 * model_info["cost"]["pmi"] + output_tokens * 1e-6 * model_info["cost"]["pmo"] ) return { "input_tokens": input_tokens, "output_tokens": output_tokens, "cost": cost, } def get_together_token_usage(metadata: dict, model_info: dict): input_tokens = metadata["token_usage"]["prompt_tokens"] output_tokens = metadata["token_usage"]["completion_tokens"] cost = ( input_tokens * 1e-6 * model_info["cost"]["pmi"] + output_tokens * 1e-6 * model_info["cost"]["pmo"] ) return { "input_tokens": input_tokens, "output_tokens": output_tokens, "cost": cost, } def get_token_usage(metadata: dict, model_info: dict, provider: str): match provider: case "OpenAI": return get_openai_token_usage(metadata, model_info) case "Anthropic": return get_anthropic_token_usage(metadata, model_info) case "Together": return get_together_token_usage(metadata, model_info) case _: raise ValueError() def display_api_usage(response, model_info, provider: str): with st.container(border=True): st.write("API Usage") token_usage = get_token_usage( response["aimessage"].response_metadata, model_info, provider ) col1, col2, col3 = st.columns(3) with col1: st.metric("Input Tokens", token_usage["input_tokens"]) with col2: st.metric("Output Tokens", token_usage["output_tokens"]) with col3: st.metric("Cost", f"${token_usage['cost']:.4f}") with st.expander("Response Metadata"): st.warning(response["aimessage"].response_metadata)