import torch import torch.nn as nn import math __all__ = ['U2NET_full', 'U2NET_lite'] def _upsample_like(x, size): return nn.Upsample(size=size, mode='bilinear', align_corners=False)(x) def _size_map(x, height): # {height: size} for Upsample size = list(x.shape[-2:]) sizes = {} for h in range(1, height): sizes[h] = size size = [math.ceil(w / 2) for w in size] return sizes class REBNCONV(nn.Module): def __init__(self, in_ch=3, out_ch=3, dilate=1): super(REBNCONV, self).__init__() self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dilate, dilation=1 * dilate) self.bn_s1 = nn.BatchNorm2d(out_ch) self.relu_s1 = nn.ReLU(inplace=True) def forward(self, x): return self.relu_s1(self.bn_s1(self.conv_s1(x))) class RSU(nn.Module): def __init__(self, name, height, in_ch, mid_ch, out_ch, dilated=False): super(RSU, self).__init__() self.name = name self.height = height self.dilated = dilated self._make_layers(height, in_ch, mid_ch, out_ch, dilated) def forward(self, x): sizes = _size_map(x, self.height) x = self.rebnconvin(x) # U-Net like symmetric encoder-decoder structure def unet(x, height=1): if height < self.height: x1 = getattr(self, f'rebnconv{height}')(x) if not self.dilated and height < self.height - 1: x2 = unet(getattr(self, 'downsample')(x1), height + 1) else: x2 = unet(x1, height + 1) x = getattr(self, f'rebnconv{height}d')(torch.cat((x2, x1), 1)) return _upsample_like(x, sizes[height - 1]) if not self.dilated and height > 1 else x else: return getattr(self, f'rebnconv{height}')(x) return x + unet(x) def _make_layers(self, height, in_ch, mid_ch, out_ch, dilated=False): self.add_module('rebnconvin', REBNCONV(in_ch, out_ch)) self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True)) self.add_module(f'rebnconv1', REBNCONV(out_ch, mid_ch)) self.add_module(f'rebnconv1d', REBNCONV(mid_ch * 2, out_ch)) for i in range(2, height): dilate = 1 if not dilated else 2 ** (i - 1) self.add_module(f'rebnconv{i}', REBNCONV(mid_ch, mid_ch, dilate=dilate)) self.add_module(f'rebnconv{i}d', REBNCONV(mid_ch * 2, mid_ch, dilate=dilate)) dilate = 2 if not dilated else 2 ** (height - 1) self.add_module(f'rebnconv{height}', REBNCONV(mid_ch, mid_ch, dilate=dilate)) class U2NET(nn.Module): def __init__(self, cfgs, out_ch): super(U2NET, self).__init__() self.out_ch = out_ch self._make_layers(cfgs) def forward(self, x): sizes = _size_map(x, self.height) maps = [] # storage for maps # side saliency map def unet(x, height=1): if height < 6: x1 = getattr(self, f'stage{height}')(x) x2 = unet(getattr(self, 'downsample')(x1), height + 1) x = getattr(self, f'stage{height}d')(torch.cat((x2, x1), 1)) side(x, height) return _upsample_like(x, sizes[height - 1]) if height > 1 else x else: x = getattr(self, f'stage{height}')(x) side(x, height) return _upsample_like(x, sizes[height - 1]) def side(x, h): # side output saliency map (before sigmoid) x = getattr(self, f'side{h}')(x) x = _upsample_like(x, sizes[1]) maps.append(x) def fuse(): # fuse saliency probability maps maps.reverse() x = torch.cat(maps, 1) x = getattr(self, 'outconv')(x) maps.insert(0, x) return [torch.sigmoid(x) for x in maps] unet(x) maps = fuse() return maps def _make_layers(self, cfgs): self.height = int((len(cfgs) + 1) / 2) self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True)) for k, v in cfgs.items(): # build rsu block self.add_module(k, RSU(v[0], *v[1])) if v[2] > 0: # build side layer self.add_module(f'side{v[0][-1]}', nn.Conv2d(v[2], self.out_ch, 3, padding=1)) # build fuse layer self.add_module('outconv', nn.Conv2d(int(self.height * self.out_ch), self.out_ch, 1)) def U2NET_full(): full = { # cfgs for building RSUs and sides # {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]} 'stage1': ['En_1', (7, 3, 32, 64), -1], 'stage2': ['En_2', (6, 64, 32, 128), -1], 'stage3': ['En_3', (5, 128, 64, 256), -1], 'stage4': ['En_4', (4, 256, 128, 512), -1], 'stage5': ['En_5', (4, 512, 256, 512, True), -1], 'stage6': ['En_6', (4, 512, 256, 512, True), 512], 'stage5d': ['De_5', (4, 1024, 256, 512, True), 512], 'stage4d': ['De_4', (4, 1024, 128, 256), 256], 'stage3d': ['De_3', (5, 512, 64, 128), 128], 'stage2d': ['De_2', (6, 256, 32, 64), 64], 'stage1d': ['De_1', (7, 128, 16, 64), 64], } return U2NET(cfgs=full, out_ch=1) def U2NET_lite(): lite = { # cfgs for building RSUs and sides # {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]} 'stage1': ['En_1', (7, 3, 16, 64), -1], 'stage2': ['En_2', (6, 64, 16, 64), -1], 'stage3': ['En_3', (5, 64, 16, 64), -1], 'stage4': ['En_4', (4, 64, 16, 64), -1], 'stage5': ['En_5', (4, 64, 16, 64, True), -1], 'stage6': ['En_6', (4, 64, 16, 64, True), 64], 'stage5d': ['De_5', (4, 128, 16, 64, True), 64], 'stage4d': ['De_4', (4, 128, 16, 64), 64], 'stage3d': ['De_3', (5, 128, 16, 64), 64], 'stage2d': ['De_2', (6, 128, 16, 64), 64], 'stage1d': ['De_1', (7, 128, 16, 64), 64], } return U2NET(cfgs=lite, out_ch=1)