# coding=utf-8 # Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch BEiT model. """ import collections.abc import math import numpy as np from dataclasses import dataclass from typing import Optional, Tuple import zCurve import hilbert import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from einops import rearrange, repeat from transformers.activations import ACT2FN from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, SequenceClassifierOutput from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer from svitt.sparse_config import BeitConfig _CONFIG_FOR_DOC = "BeitConfig" _CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224" BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/beit-base-patch16-224", # See all BEiT models at https://huggingface.co/models?filter=beit ] @dataclass class BeitModelOutputWithPooling(BaseModelOutputWithPooling): """ Class for outputs of :class:`~transformers.BeitModel`. Args: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`): Average of the last layer hidden states of the patch tokens (excluding the `[CLS]` token) if `config.use_mean_pooling` is set to True. If set to False, then the final hidden state of the `[CLS]` token will be returned. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ token_idx: Optional[Tuple[torch.LongTensor]] = None @dataclass class BeitModelOutput(BaseModelOutput): token_idx: Optional[Tuple[torch.LongTensor]] = None # Inspired by # https://github.com/rwightman/pytorch-image-models/blob/b9bd960a032c75ca6b808ddeed76bee5f3ed4972/timm/models/layers/helpers.py # From PyTorch internals def to_2tuple(x): if isinstance(x, collections.abc.Iterable): return x return (x, x) # Based on https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py def drop_path(x, drop_prob: float = 0.0, training: bool = False): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super().__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) # Based on timm implementation, which can be found here: # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py class BeitEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if config.use_mask_token: self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) else: self.mask_token = None self.patch_embeddings = PatchEmbeddings( image_size=config.image_size, patch_size=config.patch_size, num_channels=config.num_channels, embed_dim=config.hidden_size, ) num_patches = self.patch_embeddings.num_patches if config.use_absolute_position_embeddings: self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) else: self.position_embeddings = None self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, pixel_values, bool_masked_pos=None): if pixel_values.ndim == 5: # video input= embeddings = self.patch_embeddings(pixel_values.flatten(0, 1)) embeddings = rearrange(embeddings, '(b m) n d -> b (m n) d', m=pixel_values.shape[1]) else: # image input embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, _ = embeddings.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_tokens w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1 - w) + mask_tokens * w embeddings = torch.cat((cls_tokens, embeddings), dim=1) if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings # Based on timm implementation, which can be found here: # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py class PatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__(self, image_size=224, patch_size=16, num_channels=3, embed_dim=768): super().__init__() image_size = to_2tuple(image_size) patch_size = to_2tuple(patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.patch_shape = patch_shape self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape # FIXME look at relaxing size constraints if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x class BeitSelfAttention(nn.Module): def __init__(self, config, window_size=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) # sparse params self.random_attn = config.sparse_random_attn self.local_attn = config.sparse_local_attn self.block_size = config.attn_block_size self.num_cls_tokens = config.num_cls_tokens if self.local_attn is not None and self.random_attn is not None: self.num_kv_blocks = self.local_attn + self.random_attn if window_size: self.relative_position_bias = BeitRelativePositionBias3D(config, window_size=window_size) else: self.relative_position_bias = None def split_heads(self, x): return rearrange(x, 'b n (h d) -> b h n d', h=self.num_attention_heads) def join_heads(self, x): return rearrange(x, 'b h n d -> b n (h d)') def blockify(self, x): assert x.dim() == 4, f"Unsupported input shape {x.shape}" seq_len = x.shape[2] if seq_len % self.block_size > 0: # seq_len not divisible by block_size, zero pad pad_len = self.block_size - seq_len % self.block_size x = nn.functional.pad(x, (0, 0, 0, pad_len)) else: pad_len = 0 x = rearrange(x, 'b h (m n) d -> b h m n d', n=self.block_size) return x, pad_len def dense_attention(self, q, k, v, head_mask=None, relative_position_bias=None, q_idx=None, k_idx=None): # q, k, v: (bsz, num_heads, seq_len, dims) assert k.shape[2] == v.shape[2], "Key and value shapes mismatch" sim = torch.einsum('b h i d, b h j d -> b h i j', q, k) sim = sim / math.sqrt(self.attention_head_size) # Add relative position bias if present. if self.relative_position_bias is not None: if q_idx is not None and q_idx.ndim == 2: assert k_idx is not None and len(q_idx) == len(k_idx) bias = torch.stack([ self.relative_position_bias(from_idx=q_idx_, to_idx=k_idx_) for q_idx_, k_idx_ in zip(q_idx, k_idx) ]) else: bias = self.relative_position_bias(from_idx=q_idx, to_idx=k_idx).unsqueeze(0) sim = sim + bias # Add shared relative position bias if provided. if relative_position_bias is not None: sim = sim + relative_position_bias # Normalize the attention scores to probabilities. attn = sim.softmax(dim=-1) attn = self.dropout(attn) if head_mask is not None: attn = attn * head_mask out = torch.einsum('b h i j, b h j d -> b h i d', attn, v) return out, attn def _sparse_attn_relative_position_bias(self, q_idx, pad_q, attn_idx, group_len): q_idx_blk = nn.functional.pad(q_idx, (0, pad_q)).view(-1, self.block_size) attn_idx_flt = rearrange(q_idx_blk[attn_idx], 'm n j -> m (n j)') # (seq_len, num_kv_blocks * group_len) cls_idx = torch.arange(self.num_cls_tokens, device=q_idx.device) cls_idx = repeat(cls_idx, 'n -> m n', m=len(attn_idx_flt)) attn_idx_flt = torch.cat((cls_idx, attn_idx_flt), dim=1) attn_idx_flt = repeat(attn_idx_flt, 'm n -> (m i) n', i=group_len) if pad_q > 0: attn_idx_flt = attn_idx_flt[:-pad_q] bias_flt = self.relative_position_bias(from_idx=q_idx, to_idx=attn_idx_flt) if pad_q > 0: bias_flt = nn.functional.pad(bias_flt, (0, 0, 0, pad_q)) return rearrange(bias_flt, 'h (m i) n -> h m i n', i=group_len) # num_heads, seq_len, group_len, (num_kv_blocks * group_len + num_cls_tokens) def sparse_attention(self, q, k, v, head_mask=None, relative_position_bias=None, q_idx=None, mimic_full=False): assert self.local_attn == 0 or self.local_attn % 2 == 1, "Even local window size not supported" assert k.shape[2] == v.shape[2], "Key and value shapes mismatch" if not mimic_full: cls_k, k = k[..., :self.num_cls_tokens, :], k[..., self.num_cls_tokens:, :] # cls_k: (bsz, num_heads, num_cls_tokens, dims) cls_v, v = v[..., :self.num_cls_tokens, :], v[..., self.num_cls_tokens:, :] # pad token sequence to multiples of block_size if mimic_full: bsz, num_heads, seq_len, dims = q.shape else: q, pad_q = self.blockify(q) # q: (bsz, num_heads, seq_len, group_len, dims) k, pad_k = self.blockify(k) v, pad_v = self.blockify(v) bsz, num_heads, seq_len, group_len, dims = q.shape # global attention cls_sim = torch.einsum('b h n i d, b h j d -> b h n i j', q, cls_k) # (bsz, num_heads, seq_len, group_len, num_cls_tokens) if mimic_full: sim = torch.einsum('b h i d, b h j d -> b h i j', q, k) sim = sim / math.sqrt(self.attention_head_size) sim = sim + self.relative_position_bias(from_idx=q_idx).unsqueeze(0) else: # initialize empty sim matrix sim = torch.empty((bsz, num_heads, seq_len, self.num_kv_blocks, group_len, group_len), device=q.device) attn_idx = torch.zeros((seq_len, self.num_kv_blocks), dtype=torch.int64, device=q.device) # local window attention cnt = 0 if self.local_attn > 0: num_rolls = self.local_attn // 2 for r in range(-num_rolls, num_rolls + 1): sim[..., cnt, :, :] = torch.einsum('b h n i d, b h n j d -> b h n i j', q, k.roll(-r, dims=2)) attn_idx[:, cnt] = torch.arange(seq_len, device=q.device).roll(r) cnt += 1 # random attention if self.random_attn > 0: # generate random attention pattern rand = torch.rand((seq_len, seq_len), device=q.device) if self.local_attn > 0: # avoid overlap with local attention for r in range(-num_rolls, num_rolls + 1): tgt_idx = list(i % seq_len for i in range(r, seq_len + r)) rand[range(seq_len), tgt_idx] = 0 _, idx = rand.topk(self.random_attn, dim=-1) # seq_len, random_attn idx, _ = torch.sort(idx, dim=1) attn_idx[:, cnt:] = idx idx_ = repeat(idx, 'n m -> b h n m i d', b=bsz, h=num_heads, i=group_len, d=dims) for r in range(self.random_attn): sim[..., cnt, :, :] = torch.einsum('b h n i d, b h n j d -> b h n i j', q, k.gather(2, idx_[..., r, :, :])) cnt += 1 sim = rearrange(sim, 'b h m n i j -> b h m i (n j)') # (bsz, num_heads, seq_len, group_len, num_kv_blocks * group_len) sim = torch.cat((cls_sim, sim), -1) sim = sim / math.sqrt(self.attention_head_size) # Add relative position bias if present. # NOTE: we assume q and k (excluding cls) use same token indexing, for relative position embedding if self.relative_position_bias is not None: assert q_idx is not None, "query index required for relative position bias" if q_idx.ndim == 2: # different indices for each sample bias = torch.stack([ self._sparse_attn_relative_position_bias(q_idx_, pad_q, attn_idx, group_len) for q_idx_ in q_idx ]) else: bias = self._sparse_attn_relative_position_bias(q_idx, pad_q, attn_idx, group_len).unsqueeze(0) sim = sim + bias # Add shared relative position bias if provided. if relative_position_bias is not None: raise NotImplementedError sim = sim + relative_position_bias attn = sim.softmax(dim=-1) attn = self.dropout(attn) if head_mask is not None: attn = attn * head_mask # block attention if mimic_full: out = torch.einsum('b h i j, b h j d -> b h i d', attn, v) else: out = torch.empty((bsz, num_heads, seq_len, group_len, dims), device=q.device) for m in range(seq_len): v_row = torch.index_select(v, 2, attn_idx[m]) v_row = rearrange(v_row, 'b h n j d -> b h (n j) d') # (bsz, num_heads, num_kv_blocks * group_len, dims) v_row = torch.cat((cls_v, v_row), 2) out[..., m, :, :] = torch.einsum('b h i j, b h j d -> b h i d', attn[..., m, :, :], v_row) out = rearrange(out, 'b h n i d -> b h (n i) d') if pad_q > 0: out = out[..., :-pad_q, :] return out, attn def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None): # compute qkv q = self.split_heads(self.query(hidden_states)) k = self.split_heads(self.key(hidden_states)) v = self.split_heads(self.value(hidden_states)) # combine local token_idx with cls tokens # NOTE: assume token_idx starts from 0 cls_q_idx = torch.arange(self.num_cls_tokens, device=q.device) if token_idx is not None: if token_idx.ndim == 2: cls_q_idx = repeat(cls_q_idx, 'n -> b n', b=q.shape[0]) all_token_idx = torch.cat((cls_q_idx, token_idx + self.num_cls_tokens), dim=-1) else: all_token_idx = None if self.random_attn is None: outputs, attention_probs = self.dense_attention(q, k, v, head_mask=head_mask, relative_position_bias=relative_position_bias, q_idx=all_token_idx, k_idx=all_token_idx) cls_attention_probs = attention_probs[..., :self.num_cls_tokens, :] else: cls_q, q = q[..., :self.num_cls_tokens, :], q[..., self.num_cls_tokens:, :] # dense global attention (num_cls_tokens, seq_len) cls_outputs, cls_attention_probs = self.dense_attention(cls_q, k, v, head_mask=head_mask, relative_position_bias=relative_position_bias, q_idx=cls_q_idx, k_idx=all_token_idx) # sparse local attention (local_seq_len, seq_len) if token_idx is None: token_idx = torch.arange(q.shape[-2], device=q.device) outputs, attention_probs = self.sparse_attention(q, k, v, head_mask=head_mask, relative_position_bias=relative_position_bias, q_idx=token_idx + self.num_cls_tokens) outputs = torch.cat((cls_outputs, outputs), dim=2) outputs = self.join_heads(outputs) outputs = (outputs, cls_attention_probs) if output_attentions else (outputs,) return outputs class BeitSelfOutput(nn.Module): """ The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, gamma=None): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class BeitAttention(nn.Module): def __init__(self, config, window_size=None): super().__init__() self.attention = BeitSelfAttention(config, window_size=window_size) self.output = BeitSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None): self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias, token_idx) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BeitIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BeitOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class BeitLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config, window_size=None, drop_path_rate=0.0, token_keep_rate=1.0): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BeitAttention(config, window_size=window_size) self.intermediate = BeitIntermediate(config) self.output = BeitOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # sparse params self.token_keep_rate = token_keep_rate self.token_keep_strategy = config.token_keep_strategy self.num_cls_tokens = config.num_cls_tokens init_values = config.layer_scale_init_value if init_values > 0: self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) else: self.lambda_1, self.lambda_2 = None, None def sparsify(self, x, attn): x_cls, x_ = x[:, :self.num_cls_tokens], x[:, self.num_cls_tokens:] assert 0 < self.token_keep_rate <= 1, "Expected keep rate in range (0, 1]" left_tokens = math.ceil(self.token_keep_rate * x_.size(1)) if self.token_keep_strategy == 'cls_attn': if len(attn.shape) == 4: attn = attn.mean(1) # pool over attention heads cls_attn = attn[:, 0, self.num_cls_tokens:] _, idx = torch.topk(cls_attn, left_tokens, dim=1) # [B, left_tokens] elif self.token_keep_strategy == 'random': rand = torch.rand(x_.shape[:2], device=x_.device) _, idx = torch.topk(rand, left_tokens, dim=1) # [B, left_tokens] else: raise NotImplementedError(f"Sparse strategy {self.token_keep_strategy} is not implemented") idx, _ = torch.sort(idx, dim=1) index = idx.unsqueeze(-1).expand(-1, -1, x_.size(-1)) # [B, left_tokens, C] outputs = torch.cat((x_cls, x_.gather(1, index)), dim=1).contiguous() return outputs, idx def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None): self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention head_mask, output_attentions=(output_attentions or self.token_keep_rate < 1), relative_position_bias=relative_position_bias, token_idx=token_idx ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # apply lambda_1 if present if self.lambda_1 is not None: attention_output = self.lambda_1 * attention_output # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # in BEiT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output) if self.lambda_2 is not None: layer_output = self.lambda_2 * layer_output # second residual connection layer_output = self.drop_path(layer_output) + hidden_states # node sparsification if self.token_keep_rate < 1: layer_output, token_keep_idx = self.sparsify(layer_output, outputs[0]) if token_idx is not None: if token_idx.ndim == 1: token_idx = repeat(token_idx, 'n -> b n', b=len(token_keep_idx)) token_keep_idx = token_idx.gather(1, token_keep_idx) outputs = outputs + (token_keep_idx,) outputs = (layer_output,) + outputs return outputs class BeitRelativePositionBias(nn.Module): def __init__(self, config, window_size): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, config.num_attention_heads) ) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = torch.zeros( size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype ) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index, persistent=False) def forward(self): relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 ) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww class BeitRelativePositionBias3D(nn.Module): """ 3D relative position bias """ def __init__(self, config, window_size, num_cls_tokens=1): super().__init__() self.window_size = window_size self.num_cls_tokens = num_cls_tokens relative_size = [w * 2 - 1 for w in window_size] self.num_relative_distance = np.prod(relative_size) + 2 * num_cls_tokens + num_cls_tokens ** 2 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, config.num_attention_heads) ) # get pair-wise relative position index for each token inside the window coords_range = [torch.arange(w) for w in window_size] coords_flatten = torch.stack(torch.meshgrid(coords_range)).flatten(1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() for i, w in enumerate(window_size): relative_coords[:, :, i] += w - 1 # shift to start from 0 for i, r in enumerate(relative_size[1:]): relative_coords[:, :, :i + 1] *= r self.seq_len = np.prod(window_size) + num_cls_tokens relative_position_index = torch.zeros((self.seq_len, self.seq_len), dtype=relative_coords.dtype) relative_position_index[num_cls_tokens:, num_cls_tokens:] = relative_coords.sum(-1) start = np.prod(relative_size) cls2loc = torch.arange(num_cls_tokens).unsqueeze(1) + start relative_position_index[:num_cls_tokens, num_cls_tokens:] = cls2loc start += num_cls_tokens loc2cls = torch.arange(num_cls_tokens).unsqueeze(0) + start relative_position_index[num_cls_tokens:, :num_cls_tokens] = loc2cls start += num_cls_tokens cls2cls = torch.arange(num_cls_tokens ** 2).view(num_cls_tokens, num_cls_tokens) + start relative_position_index[:num_cls_tokens, :num_cls_tokens] = cls2cls self.register_buffer("relative_position_index", relative_position_index) def forward(self, from_idx=None, to_idx=None): """ from_idx: indices of query tokens (1-dim) to_idx: indices of key/value tokens (1-dim, or 2-dim w/ one row per query) """ attn_idx = self.relative_position_index # query indices if from_idx is not None: attn_idx = attn_idx[from_idx] # key indices if to_idx is not None: assert to_idx.ndim in (1, 2), "to_idx must be 1- or 2-dimensional tensors" if to_idx.ndim == 1: attn_idx = attn_idx[:, to_idx] else: attn_idx = attn_idx.gather(1, to_idx) rows, cols = attn_idx.shape relative_position_bias = self.relative_position_bias_table[attn_idx.flatten()] relative_position_bias = rearrange(relative_position_bias, '(i j) h -> h i j', i=rows, j=cols) return relative_position_bias.contiguous() class BeitEncoder(nn.Module): def __init__(self, config, window_size=None): super().__init__() self.config = config if config.use_shared_relative_position_bias: self.relative_position_bias = BeitRelativePositionBias3D(config, window_size=window_size) else: self.relative_position_bias = None self._register_token_order(window_size) # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] # node sparsification token_keep_rate = [1] * config.num_hidden_layers for loc in config.token_drop_loc: token_keep_rate[loc] = config.token_keep_rate self.layer = nn.ModuleList( [ BeitLayer( config, window_size=window_size if config.use_relative_position_bias else None, drop_path_rate=dpr[i], token_keep_rate=token_keep_rate[i] ) for i in range(config.num_hidden_layers) ] ) self.gradient_checkpointing = False def _register_token_order(self, shape): if self.config.token_3d_order == 'none': order = None elif self.config.token_3d_order == 'zcurve': nbits = max(shape).bit_length() coords = list(np.ndindex(*shape)) order = zCurve.par_interlace(coords, len(shape), nbits) order = torch.tensor(np.argsort(order)) elif self.config.token_3d_order == 'hilbert': nbits = max(shape).bit_length() coords = list(np.ndindex(*shape)) order = hilbert.encode(np.stack(coords), len(shape), nbits) order = torch.tensor(np.argsort(order)) else: raise NotImplementedError(f"Token ordering {self.config.token_3d_order} not supported") if order is not None: self.register_buffer('token_order', order, persistent=False) else: self.token_order = None def forward( self, hidden_states, head_mask=None, output_attentions=False, output_hidden_states=False, output_token_idx=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_token_idx = () if output_token_idx else None token_idx = self.token_order if token_idx is not None: cls_states, local_states = hidden_states[:, :self.config.num_cls_tokens], hidden_states[:, self.config.num_cls_tokens:] local_states = torch.index_select(local_states, dim=1, index=token_idx) hidden_states = torch.cat((cls_states, local_states), 1) for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, layer_head_mask, ) else: relative_position_bias = ( self.relative_position_bias() if self.relative_position_bias is not None else None ) layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias, token_idx) hidden_states = layer_outputs[0] if layer_module.token_keep_rate < 1: token_idx = layer_outputs[-1] if output_token_idx: all_token_idx = all_token_idx + (token_idx,) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BeitModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, token_idx=all_token_idx ) class BeitPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BeitConfig base_model_prefix = "beit" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, BeitEncoder): module.gradient_checkpointing = value BEIT_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module `_ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.BeitConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ BEIT_INPUTS_DOCSTRING = r""" Args: pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using :class:`~transformers.BeitFeatureExtractor`. See :meth:`transformers.BeitFeatureExtractor.__call__` for details. head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare Beit Model transformer outputting raw hidden-states without any specific head on top.", BEIT_START_DOCSTRING, ) class BeitModel(BeitPreTrainedModel): def __init__(self, config, add_pooling_layer=True, num_frames=None): super().__init__(config) self.config = config self.embeddings = BeitEmbeddings(config) self.window_size = self.embeddings.patch_embeddings.patch_shape if num_frames is not None: self.window_size = (num_frames,) + self.window_size self.encoder = BeitEncoder(config, window_size=self.window_size) self.layernorm = ( nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) ) self.pooler = BeitPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BeitModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values=None, bool_masked_pos=None, head_mask=None, output_attentions=None, output_hidden_states=None, output_token_idx=None, return_dict=None, ): r""" Returns: Examples:: >>> from transformers import BeitFeatureExtractor, BeitModel >>> from PIL import Image >>> import requests >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k') >>> model = BeitModel.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k') >>> inputs = feature_extractor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values, bool_masked_pos) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_token_idx=output_token_idx, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BeitModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, token_idx=encoder_outputs.token_idx, ) class BeitPooler(nn.Module): def __init__(self, config): super().__init__() self.layernorm = ( nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None ) def forward(self, hidden_states): if self.layernorm is not None: # Mean pool the final hidden states of the patch tokens patch_tokens = hidden_states[:, 1:, :] pooled_output = self.layernorm(patch_tokens.mean(1)) else: # Pool by simply taking the final hidden state of the [CLS] token pooled_output = hidden_states[:, 0] return pooled_output @add_start_docstrings( "Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).", BEIT_START_DOCSTRING, ) class BeitForMaskedImageModeling(BeitPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.beit = BeitModel(config, add_pooling_layer=False) # Classifier head self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values=None, bool_masked_pos=None, head_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" bool_masked_pos (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples:: >>> from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling >>> from PIL import Image >>> import requests >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k') >>> model = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k') >>> inputs = feature_extractor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.beit( pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.layernorm(sequence_output) prediction_scores = self.lm_head(sequence_output[:, 1:]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final hidden states of the patch tokens) e.g. for ImageNet. """, BEIT_START_DOCSTRING, ) class BeitForImageClassification(BeitPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.beit = BeitModel(config, add_pooling_layer=True) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values=None, head_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples:: >>> from transformers import BeitFeatureExtractor, BeitForImageClassification >>> from PIL import Image >>> import requests >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224') >>> model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224') >>> inputs = feature_extractor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.beit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class BeitConvModule(nn.Module): """ A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, in_channels, out_channels, kernel_size, padding=0, bias=False, dilation=1): super().__init__() self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, bias=bias, dilation=dilation, ) self.bn = nn.BatchNorm2d(out_channels) self.activation = nn.ReLU() def forward(self, input): output = self.conv(input) output = self.bn(output) output = self.activation(output) return output class BeitPyramidPoolingModule(nn.ModuleList): """ Pyramid Pooling Module (PPM) used in PSPNet. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. in_channels (int): Input channels. channels (int): Channels after modules, before conv_seg. align_corners (bool): align_corners argument of F.interpolate. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, pool_scales, in_channels, channels, align_corners): super().__init__() self.pool_scales = pool_scales self.align_corners = align_corners self.in_channels = in_channels self.channels = channels for pool_scale in pool_scales: self.append( nn.Sequential( nn.AdaptiveAvgPool2d(pool_scale), BeitConvModule(self.in_channels, self.channels, kernel_size=1), ) ) def forward(self, x): ppm_outs = [] for ppm in self: ppm_out = ppm(x) upsampled_ppm_out = nn.functional.interpolate( ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners ) ppm_outs.append(upsampled_ppm_out) return ppm_outs class BeitUperHead(nn.Module): """ Unified Perceptual Parsing for Scene Understanding. This head is the implementation of `UPerNet `_. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, config): super().__init__() self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] self.channels = config.hidden_size self.align_corners = False self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) # PSP Module self.psp_modules = BeitPyramidPoolingModule( self.pool_scales, self.in_channels[-1], self.channels, align_corners=self.align_corners, ) self.bottleneck = BeitConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels, self.channels, kernel_size=3, padding=1, ) # FPN Module self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1) fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_bottleneck = BeitConvModule( len(self.in_channels) * self.channels, self.channels, kernel_size=3, padding=1, ) def psp_forward(self, inputs): x = inputs[-1] psp_outs = [x] psp_outs.extend(self.psp_modules(x)) psp_outs = torch.cat(psp_outs, dim=1) output = self.bottleneck(psp_outs) return output def forward(self, encoder_hidden_states): # build laterals laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(encoder_hidden_states)) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners ) # build outputs fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1, 0, -1): fpn_outs[i] = nn.functional.interpolate( fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners ) fpn_outs = torch.cat(fpn_outs, dim=1) output = self.fpn_bottleneck(fpn_outs) output = self.classifier(output) return output class BeitFCNHead(nn.Module): """ Fully Convolution Networks for Semantic Segmentation. This head is implemented of `FCNNet `_. Args: config (BeitConfig): Configuration. in_channels kernel_size (int): The kernel size for convs in the head. Default: 3. dilation (int): The dilation rate for convs in the head. Default: 1. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, config, in_index=2, kernel_size=3, dilation=1): super().__init__() self.in_channels = config.hidden_size self.channels = config.auxiliary_channels self.num_convs = config.auxiliary_num_convs self.concat_input = config.auxiliary_concat_input self.in_index = in_index conv_padding = (kernel_size // 2) * dilation convs = [] convs.append( BeitConvModule( self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation ) ) for i in range(self.num_convs - 1): convs.append( BeitConvModule( self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation ) ) if self.num_convs == 0: self.convs = nn.Identity() else: self.convs = nn.Sequential(*convs) if self.concat_input: self.conv_cat = BeitConvModule( self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 ) self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) def forward(self, encoder_hidden_states): # just take the relevant feature maps hidden_states = encoder_hidden_states[self.in_index] output = self.convs(hidden_states) if self.concat_input: output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) output = self.classifier(output) return output @add_start_docstrings( """ Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. """, BEIT_START_DOCSTRING, ) class BeitForSemanticSegmentation(BeitPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.beit = BeitModel(config, add_pooling_layer=False) # FPNs self.fpn1 = nn.Sequential( nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), nn.BatchNorm2d(config.hidden_size), nn.GELU(), nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) # Semantic segmentation head(s) self.decode_head = BeitUperHead(config) self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() def compute_loss(self, logits, auxiliary_logits, labels): # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) if auxiliary_logits is not None: upsampled_auxiliary_logits = nn.functional.interpolate( auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) # compute weighted loss loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) main_loss = loss_fct(upsampled_logits, labels) auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss return loss @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values=None, head_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, height, width)`, `optional`): Ground truth semantic segmentation maps for computing the loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples:: >>> from transformers import BeitFeatureExtractor, BeitForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-finetuned-ade-640-640') >>> model = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640') >>> inputs = feature_extractor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height/4, width/4) >>> logits = outputs.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.beit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[2] # only keep certain features, and reshape # note that we do +1 as the encoder_hidden_states also includes the initial embeddings features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] batch_size = pixel_values.shape[0] patch_resolution = self.config.image_size // self.config.patch_size features = [ x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features ] # apply FPNs ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) logits = self.decode_head(features) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(features) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: loss = self.compute_loss(logits, auxiliary_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[2:] else: output = (logits,) + outputs[3:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )