import streamlit as st import pandas as pd import sys import os from datasets import load_from_disk # from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode from sklearn.metrics.pairwise import cosine_similarity import numpy as np import time from annotated_text import annotated_text ABSOLUTE_PATH = os.path.dirname(__file__) ASSETS_PATH = os.path.join(ABSOLUTE_PATH, 'model_assets') from nltk.data import find import nltk import gensim @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_embed_model(): nltk.download("word2vec_sample") word2vec_sample = str(find('models/word2vec_sample/pruned.word2vec.txt')) model = gensim.models.KeyedVectors.load_word2vec_format(word2vec_sample, binary=False) return model @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_top_n_closest(query_word, candidate, n): model = get_embed_model() t = time.time() p_c = preprocess_text(candidate) similarity = [] t = time.time() for i in p_c: try: similarity.append(model.similarity(query_word, i)) except: similarity.append(0) top_n = min(len(p_c), n) t = time.time() sorted = (-1*np.array(similarity)).argsort()[:top_n] top = [p_c[i] for i in sorted] return top @st.cache(suppress_st_warning=True, allow_output_mutation=True) def annotate_text(text, words): annotated = [text] for word in words: for i in range(len(annotated)): if type(annotated[i]) != str: continue string = annotated[i] try: index = string.index(word) except: continue first = string[:index] second = (string[index:index+len(word)],'SIMILAR') third = string[index+len(word):] annotated = annotated[:i] + [first, second, third] + annotated[i+1:] return tuple(annotated) @st.cache(suppress_st_warning=True, allow_output_mutation=True) def preprocess_text(s): return list(filter(lambda x: x!= '', (''.join(c if c.isalnum() or c == ' ' else ' ' for c in s)).split(' '))) @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_pairwise_distances(model): df = pd.read_csv(f"{ASSETS_PATH}/{model}/pairwise_distances.csv").set_index('index') return df @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_pairwise_distances_chunked(model, chunk): # for df in pd.read_csv(f"{ASSETS_PATH}/{model}/pairwise_distances.csv", chunksize = 16): # print(df.iloc[0]['queries']) # if chunk == int(df.iloc[0]['queries']): # return df return get_pairwise_distances(model) @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_query_strings(): df = pd.read_json(f"{ASSETS_PATH}/IUR_Reddit_test_queries_english.jsonl", lines = True) df['index'] = df.reset_index().index return df # df['partition'] = df['index']%100 # df.to_parquet(f"{ASSETS_PATH}/IUR_Reddit_test_queries_english.parquet", index = 'index', partition_cols = 'partition') # return pd.read_parquet(f"{ASSETS_PATH}/IUR_Reddit_test_queries_english.parquet", columns=['fullText', 'index', 'authorIDs']) @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_candidate_strings(): df = pd.read_json(f"{ASSETS_PATH}/IUR_Reddit_test_candidates_english.jsonl", lines = True) df['i'] = df['index'] df = df.set_index('i') # df['index'] = df.reset_index().index return df # df['partition'] = df['index']%100 # df.to_parquet(f"{ASSETS_PATH}/IUR_Reddit_test_candidates_english.parquet", index = 'index', partition_cols = 'partition') # return pd.read_parquet(f"{ASSETS_PATH}/IUR_Reddit_test_candidates_english.parquet", columns=['fullText', 'index', 'authorIDs']) @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_embedding_dataset(model): data = load_from_disk(f"{ASSETS_PATH}/{model}/embedding") return data @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_bad_queries(model): df = get_query_strings().iloc[list(get_pairwise_distances(model)['queries'].unique())][['fullText', 'index', 'authorIDs']] return df @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_gt_candidates(model, author): gt_candidates = get_candidate_strings() df = gt_candidates[gt_candidates['authorIDs'] == author] return df @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_candidate_text(l): return get_candidate_strings().at[l,'fullText'] @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_annotated_text(text, word, pos): print("here", word, pos) start= text.index(word, pos) end = start+len(word) return (text[:start], (text[start:end ], 'SELECTED'), text[end:]), end # class AgGridBuilder: # __static_key = 0 # def build_ag_grid(table, display_columns): # AgGridBuilder.__static_key += 1 # options_builder = GridOptionsBuilder.from_dataframe(table[display_columns]) # options_builder.configure_pagination(paginationAutoPageSize=False, paginationPageSize=10) # options_builder.configure_selection(selection_mode= 'single', pre_selected_rows = [0]) # options = options_builder.build() # return AgGrid(table, gridOptions = options, fit_columns_on_grid_load=True, key = AgGridBuilder.__static_key, reload_data = True, update_mode = GridUpdateMode.SELECTION_CHANGED | GridUpdateMode.VALUE_CHANGED) if __name__ == '__main__': st.set_page_config(layout="wide") models = filter(lambda file_name: os.path.isdir(f"{ASSETS_PATH}/{file_name}") and not file_name.endswith(".parquet"), os.listdir(ASSETS_PATH)) with st.sidebar: current_model = st.selectbox( "Select Model to analyze", models ) pairwise_distances = get_pairwise_distances(current_model) embedding_dataset = get_embedding_dataset(current_model) candidate_string_grid = None gt_candidate_string_grid = None with st.container(): t1 = time.time() st.title("Full Text") col1, col2 = st.columns([14, 2]) t2 = time.time() query_table = get_bad_queries(current_model) t3 = time.time() print(query_table) with col2: index = st.number_input('Enter Query number to inspect', min_value = 0, max_value = query_table.shape[0], step = 1) query_text = query_table.loc[index]['fullText'] preprocessed_query_text = preprocess_text(query_text) text_highlight_index = st.number_input('Enter word #', min_value = 0, max_value = len(preprocessed_query_text), step = 1) query_index = int(query_table.iloc[index]['index']) with col1: if 'pos_highlight' not in st.session_state or text_highlight_index == 0: st.session_state['pos_highlight'] = text_highlight_index st.session_state['pos_history'] = [0] if st.session_state['pos_highlight'] > text_highlight_index: st.session_state['pos_history'] = st.session_state['pos_history'][:-2] if len(st.session_state['pos_history']) == 0: st.session_state['pos_history'] = [0] print("pos", st.session_state['pos_history'], st.session_state['pos_highlight'], text_highlight_index) anotated_text_, pos = get_annotated_text(query_text, preprocessed_query_text[text_highlight_index-1], st.session_state['pos_history'][-1]) if text_highlight_index >= 1 else ((query_text), 0) if st.session_state['pos_highlight'] < text_highlight_index: st.session_state['pos_history'].append(pos) st.session_state['pos_highlight'] = text_highlight_index annotated_text(*anotated_text_) # annotated_text("Lol, this" , ('guy', 'SELECTED') , "is such a PR chameleon. \n\n In the Chan Zuckerberg Initiative announcement, he made it sound like he was giving away all his money to charity or . http://www.businessinsider.in/Mark-Zuckerberg-says-hes-giving-99-of-his-Facebook-shares-45-billion-to-charity/articleshow/50005321.cms Apparently, its just a VC fund. And there are still people out there who believe Facebook.org was an initiative to bring Internet to the poor.") t4 = time.time() print(f"query time query text: {t3-t2}, total time: {t4-t1}") with st.container(): st.title("Top 16 Recommended Candidates") col1, col2, col3 = st.columns([10, 4, 2]) rec_candidates = pairwise_distances[pairwise_distances["queries"]==query_index]['candidates'] print(rec_candidates) l = list(rec_candidates) with col3: candidate_rec_index = st.number_input('Enter recommended candidate number to inspect', min_value = 0, max_value = len(l), step = 1) print("l:",l, query_index) pairwise_candidate_index = int(l[candidate_rec_index]) with col1: st.header("Text") t1 = time.time() candidate_text = get_candidate_text(pairwise_candidate_index) if st.session_state['pos_highlight'] == 0: annotated_text(candidate_text) else: top_n_words_to_highlight = get_top_n_closest(preprocessed_query_text[text_highlight_index-1], candidate_text, 4) print("TOPN", top_n_words_to_highlight) annotated_text(*annotate_text(candidate_text, top_n_words_to_highlight)) t2 = time.time() with col2: st.header("Cosine Distance") st.write(float(pairwise_distances[\ ( pairwise_distances['queries'] == query_index ) \ & ( pairwise_distances['candidates'] == pairwise_candidate_index)]['distances'])) print(f"candidate string retreival: {t2-t1}") with st.container(): t1 = time.time() st.title("Candidates With Same Authors As Query") col1, col2, col3 = st.columns([10, 4, 2]) t2 = time.time() gt_candidates = get_gt_candidates(current_model, query_table.iloc[query_index]['authorIDs'][0]) t3 = time.time() with col3: candidate_index = st.number_input('Enter ground truthnumber to inspect', min_value = 0, max_value = gt_candidates.shape[0], step = 1) print(gt_candidates.head()) gt_candidate_index = int(gt_candidates.iloc[candidate_index]['index']) with col1: st.header("Text") st.write(gt_candidates.iloc[candidate_index]['fullText']) with col2: t4 = time.time() st.header("Cosine Distance") indices = list(embedding_dataset['candidates']['index']) st.write(1-cosine_similarity(np.array([embedding_dataset['queries'][query_index]['embedding']]), np.array([embedding_dataset['candidates'][indices.index(gt_candidate_index)]['embedding']]))[0,0]) t5 = time.time() print(f"find gt candidates: {t3-t2}, find cosine: {t5-t4}, total: {t5-t1}")