# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math from functools import partial from scipy import interpolate import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import drop_path, to_2tuple, trunc_normal_ #from timm.models.registry import register_model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww class VisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, use_mean_pooling=True, init_scale=0.001): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) # trunc_normal_(self.mask_token, std=.02) self.apply(self._init_weights) self.fix_init_weight() if num_classes > 0: trunc_normal_(self.head.weight, std=.02) self.head.weight.data.mul_(init_scale) self.head.bias.data.mul_(init_scale) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for blk in self.blocks: x = blk(x, rel_pos_bias=rel_pos_bias) x = self.norm(x) if self.fc_norm is not None: t = x[:, 1:, :] return self.fc_norm(t.mean(1)) else: return x[:, 0] def forward(self, x): x = self.forward_features(x) x = self.head(x) return x #@register_model def beit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model #@register_model def beit_base_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model #@register_model def beit_large_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model #@register_model def beit_large_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model #@register_model def beit_large_patch16_512(pretrained=False, **kwargs): model = VisionTransformer( img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"): missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def _load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: _load(child, prefix + name + '.') _load(model, prefix=prefix) warn_missing_keys = [] ignore_missing_keys = [] for key in missing_keys: keep_flag = True for ignore_key in ignore_missing.split('|'): if ignore_key in key: keep_flag = False break if keep_flag: warn_missing_keys.append(key) else: ignore_missing_keys.append(key) missing_keys = warn_missing_keys if len(missing_keys) > 0: print("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: print("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(ignore_missing_keys) > 0: print("Ignored weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, ignore_missing_keys)) if len(error_msgs) > 0: print('\n'.join(error_msgs)) def default_pretrained_model(args): model = beit_base_patch16_224( pretrained=False, img_size=args.image_size, num_classes=0, drop_rate=0., drop_path_rate=0.1, attn_drop_rate=0., #drop_block_rate=None, use_mean_pooling=True, init_scale=0.001, use_rel_pos_bias=True, use_abs_pos_emb=False, init_values=0.1, ) #url = 'https://unilm.blob.core.windows.net/beit/beit_base_patch16_224_pt22k.pth' url = 'https://unilm.blob.core.windows.net/beit/beit_base_patch16_224_pt22k_ft22k.pth' checkpoint = torch.hub.load_state_dict_from_url( url, map_location='cpu', check_hash=True) print('Pretrained weights found at {}'.format(url)) # select key checkpoint_model = None for model_key in ['model', 'module']: if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print("Load state_dict by model_key = %s" % model_key) break if checkpoint_model is None: checkpoint_model = checkpoint # remove head state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: #if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: if k in checkpoint_model: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] # resize rel_pos_bias if model.use_rel_pos_bias and "rel_pos_bias.relative_position_bias_table" in checkpoint_model: print("Expand the shared relative position embedding to each transformer block. ") num_layers = model.get_num_layers() rel_pos_bias = checkpoint_model["rel_pos_bias.relative_position_bias_table"] for i in range(num_layers): checkpoint_model["blocks.%d.attn.relative_position_bias_table" % i] = rel_pos_bias.clone() checkpoint_model.pop("rel_pos_bias.relative_position_bias_table") all_keys = list(checkpoint_model.keys()) for key in all_keys: if "relative_position_index" in key: checkpoint_model.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = checkpoint_model[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: print("Position interpolate for %s from %dx%d to %dx%d" % ( key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.090307: # q = 1.090307 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) print("Original positions = %s" % str(x)) print("Target positions = %s" % str(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) checkpoint_model[key] = new_rel_pos_bias # interpolate position embedding if 'pos_embed' in checkpoint_model: pos_embed_checkpoint = checkpoint_model['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model['pos_embed'] = new_pos_embed load_state_dict(model, checkpoint_model) return model