import math import torch import warnings import ml_collections import random import torch.nn.functional as F def DiffAugment(x, types=[], prob = 0.5, detach=True): """ x.shape = B, C, H, W """ if random.random() < prob: with torch.set_grad_enabled(not detach): x = random_hflip(x, prob=0.5) for p in types: for f in AUGMENT_FNS[p]: x = f(x) x = x.contiguous() return x def random_hflip(tensor, prob): if prob > random.random(): return tensor return torch.flip(tensor, dims=(3,)) def rand_brightness(x): x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5) return x def rand_saturation(x): x_mean = x.mean(dim=1, keepdim=True) x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean return x def rand_contrast(x): x_mean = x.mean(dim=[1, 2, 3], keepdim=True) x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean return x def rand_translation(x, ratio=0.125): shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device) translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device) grid_batch, grid_x, grid_y = torch.meshgrid( torch.arange(x.size(0), dtype=torch.long, device=x.device), torch.arange(x.size(2), dtype=torch.long, device=x.device), torch.arange(x.size(3), dtype=torch.long, device=x.device), ) grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1) grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1) x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0]) x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2) return x def rand_offset(x, ratio=1, ratio_h=1, ratio_v=1): w, h = x.size(2), x.size(3) imgs = [] for img in x.unbind(dim = 0): max_h = int(w * ratio * ratio_h) max_v = int(h * ratio * ratio_v) value_h = random.randint(0, max_h) * 2 - max_h value_v = random.randint(0, max_v) * 2 - max_v if abs(value_h) > 0: img = torch.roll(img, value_h, 2) if abs(value_v) > 0: img = torch.roll(img, value_v, 1) imgs.append(img) return torch.stack(imgs) def rand_offset_h(x, ratio=1): return rand_offset(x, ratio=1, ratio_h=ratio, ratio_v=0) def rand_offset_v(x, ratio=1): return rand_offset(x, ratio=1, ratio_h=0, ratio_v=ratio) def rand_cutout(x, ratio=0.5): cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device) offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device) grid_batch, grid_x, grid_y = torch.meshgrid( torch.arange(x.size(0), dtype=torch.long, device=x.device), torch.arange(cutout_size[0], dtype=torch.long, device=x.device), torch.arange(cutout_size[1], dtype=torch.long, device=x.device), ) grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1) grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1) mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device) mask[grid_batch, grid_x, grid_y] = 0 x = x * mask.unsqueeze(1) return x AUGMENT_FNS = { 'color': [rand_brightness, rand_saturation, rand_contrast], 'offset': [rand_offset], 'offset_h': [rand_offset_h], 'offset_v': [rand_offset_v], 'translation': [rand_translation], 'cutout': [rand_cutout], } def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor return _no_grad_trunc_normal_(tensor, mean, std, a, b) def get_testing(): """Returns a minimal configuration for testing.""" config = ml_collections.ConfigDict() config.patches = ml_collections.ConfigDict({'size': (16, 16)}) config.hidden_size = 1 config.transformer = ml_collections.ConfigDict() config.transformer.mlp_dim = 1 config.transformer.num_heads = 1 config.transformer.num_layers = 1 config.transformer.attention_dropout_rate = 0.0 config.transformer.dropout_rate = 0.1 config.classifier = 'token' config.representation_size = None return config def get_b16_config(): """Returns the ViT-B/16 configuration.""" config = ml_collections.ConfigDict() config.patches = ml_collections.ConfigDict({'size': (16, 16)}) config.hidden_size = 768 config.transformer = ml_collections.ConfigDict() config.transformer.mlp_dim = 3072 config.transformer.num_heads = 12 config.transformer.num_layers = 12 config.transformer.attention_dropout_rate = 0.0 config.transformer.dropout_rate = 0.1 config.classifier = 'token' config.representation_size = None return config def get_r50_b16_config(): """Returns the Resnet50 + ViT-B/16 configuration.""" config = get_b16_config() del config.patches.size config.patches.grid = (14, 14) config.resnet = ml_collections.ConfigDict() config.resnet.num_layers = (3, 4, 9) config.resnet.width_factor = 1 return config def get_b32_config(): """Returns the ViT-B/32 configuration.""" config = get_b16_config() config.patches.size = (32, 32) return config def get_l16_config(): """Returns the ViT-L/16 configuration.""" config = ml_collections.ConfigDict() config.patches = ml_collections.ConfigDict({'size': (16, 16)}) config.hidden_size = 1024 config.transformer = ml_collections.ConfigDict() config.transformer.mlp_dim = 4096 config.transformer.num_heads = 16 config.transformer.num_layers = 24 config.transformer.attention_dropout_rate = 0.0 config.transformer.dropout_rate = 0.1 config.classifier = 'token' config.representation_size = None return config def get_l32_config(): """Returns the ViT-L/32 configuration.""" config = get_l16_config() config.patches.size = (32, 32) return config def get_h14_config(): """Returns the ViT-L/16 configuration.""" config = ml_collections.ConfigDict() config.patches = ml_collections.ConfigDict({'size': (14, 14)}) config.hidden_size = 1280 config.transformer = ml_collections.ConfigDict() config.transformer.mlp_dim = 5120 config.transformer.num_heads = 16 config.transformer.num_layers = 32 config.transformer.attention_dropout_rate = 0.0 config.transformer.dropout_rate = 0.1 config.classifier = 'token' config.representation_size = None return config