import cv2 import torch import numpy as np from transformers import DPTForDepthEstimation, DPTImageProcessor import gradio as gr import torch.nn.utils.prune as prune import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float32) model.eval() # Apply global unstructured pruning parameters_to_prune = [ (module, "weight") for module in filter(lambda m: isinstance(m, (torch.nn.Conv2d, torch.nn.Linear)), model.modules()) ] prune.global_unstructured( parameters_to_prune, pruning_method=prune.L1Unstructured, amount=0.2, # Prune 20% of weights ) for module, _ in parameters_to_prune: prune.remove(module, "weight") model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8 ) model = model.to(device) processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO) color_map = torch.from_numpy(color_map).to(device) def preprocess_image(image): image = cv2.resize(image, (128, 72)) image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device) return image / 255.0 def plot_depth_map(depth_map, original_image): fig = plt.figure(figsize=(16, 9)) ax = fig.add_subplot(111, projection='3d') x, y = np.meshgrid(range(depth_map.shape[1]), range(depth_map.shape[0])) # Resize original image to match depth map dimensions original_image_resized = cv2.resize(original_image, (depth_map.shape[1], depth_map.shape[0])) colors = original_image_resized.reshape(depth_map.shape[0], depth_map.shape[1], 3) / 255.0 ax.plot_surface(x, y, depth_map, facecolors=colors, shade=False) ax.set_zlim(0, 1) # Adjust the view to look down at an angle from a higher position ax.view_init(elev=45, azim=180) # 180-degree rotation and a higher angle plt.axis('off') plt.close(fig) fig.canvas.draw() img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) return img @torch.inference_mode() def process_frame(image): if image is None: return None preprocessed = preprocess_image(image) predicted_depth = model(preprocessed).predicted_depth depth_map = predicted_depth.squeeze().cpu().numpy() # Normalize depth map depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) # Convert BGR to RGB if necessary if image.shape[2] == 3: # Check if it's a color image image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) return plot_depth_map(depth_map, image) interface = gr.Interface( fn=process_frame, inputs=gr.Image(sources="webcam", streaming=True), outputs="image", live=True ) interface.launch()