import cv2 import torch import numpy as np from transformers import DPTForDepthEstimation, DPTImageProcessor import gradio as gr import torch.nn.utils.prune as prune device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float32) model.eval() # Apply global unstructured pruning parameters_to_prune = [ (module, "weight") for module in filter(lambda m: isinstance(m, (torch.nn.Conv2d, torch.nn.Linear)), model.modules()) ] prune.global_unstructured( parameters_to_prune, pruning_method=prune.L1Unstructured, amount=0.4, # Prune 40% of weights ) for module, _ in parameters_to_prune: prune.remove(module, "weight") model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8 ) model = model.to(device) processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") def preprocess_image(image): image = cv2.resize(image, (128, 128)) image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device) return image / 255.0 @torch.inference_mode() def process_frame(image): if image is None: return None preprocessed = preprocess_image(image) predicted_depth = model(preprocessed).predicted_depth depth_map = predicted_depth.squeeze().cpu().numpy() # Normalize depth map depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) # Create a more visually informative depth map depth_color = cv2.applyColorMap((depth_map * 255).astype(np.uint8), cv2.COLORMAP_INFERNO) # Blend original image with depth map for context original_resized = cv2.resize(image, (128, 128)) blended = cv2.addWeighted(original_resized, 0.6, depth_color, 0.4, 0) return blended interface = gr.Interface( fn=process_frame, inputs=gr.Image(sources="webcam", streaming=True), outputs="image", live=True ) interface.launch()