""" Some preprocessing utilities have been taken from: https://github.com/google-research/maxim/blob/main/maxim/run_eval.py """ import gradio as gr import numpy as np import tensorflow as tf from huggingface_hub.keras_mixin import from_pretrained_keras from PIL import Image from create_maxim_model import Model from maxim.configs import MAXIM_CONFIGS CKPT = "sayakpaul/S-2_deraining_rain13k" VARIANT = CKPT.split("/")[-1].split("_")[0] _MODEL = from_pretrained_keras(CKPT) def mod_padding_symmetric(image, factor=64): """Padding the image to be divided by factor.""" height, width = image.shape[0], image.shape[1] height_pad, width_pad = ((height + factor) // factor) * factor, ( (width + factor) // factor ) * factor padh = height_pad - height if height % factor != 0 else 0 padw = width_pad - width if width % factor != 0 else 0 image = tf.pad( image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)], mode="REFLECT" ) return image def make_shape_even(image): """Pad the image to have even shapes.""" height, width = image.shape[0], image.shape[1] padh = 1 if height % 2 != 0 else 0 padw = 1 if width % 2 != 0 else 0 image = tf.pad(image, [(0, padh), (0, padw), (0, 0)], mode="REFLECT") return image def process_image(image: Image): input_img = np.asarray(image) / 255.0 height, width = input_img.shape[0], input_img.shape[1] # Padding images to have even shapes input_img = make_shape_even(input_img) height_even, width_even = input_img.shape[0], input_img.shape[1] # padding images to be multiplies of 64 input_img = mod_padding_symmetric(input_img, factor=64) input_img = tf.expand_dims(input_img, axis=0) return input_img, height, width, height_even, width_even def init_new_model(input_img): configs = MAXIM_CONFIGS.get(VARIANT) configs.update( { "variant": VARIANT, "dropout_rate": 0.0, "num_outputs": 3, "use_bias": True, "num_supervision_scales": 3, } ) configs.update({"input_resolution": (input_img.shape[1], input_img.shape[2])}) new_model = Model(**configs) new_model.set_weights(_MODEL.get_weights()) return new_model def infer(image): preprocessed_image, height, width, height_even, width_even = process_image(image) new_model = init_new_model(preprocessed_image) preds = new_model.predict(preprocessed_image) if isinstance(preds, list): preds = preds[-1] if isinstance(preds, list): preds = preds[-1] preds = np.array(preds[0], np.float32) new_height, new_width = preds.shape[0], preds.shape[1] h_start = new_height // 2 - height_even // 2 h_end = h_start + height w_start = new_width // 2 - width_even // 2 w_end = w_start + width preds = preds[h_start:h_end, w_start:w_end, :] return Image.fromarray(np.array((np.clip(preds, 0.0, 1.0) * 255.0).astype(np.uint8))) title = "Derain images containing rain drops or stripes." description = f"The underlying model is [this](https://huggingface.co/{CKPT}). You can use the model to derain images containing rain drops or stripes. To quickly try out the model, you can choose from the available sample images below, or you can submit your own image. Not that, internally, the model is re-initialized based on the spatial dimensions of the input image and this process is time-consuming." iface = gr.Interface( infer, inputs="image", outputs=gr.Image().style(height=242), title=title, description=description, allow_flagging="never", examples=[["1.MP4.png"], ["15.png"], ["55.MP4.png"]], ) iface.launch(debug=True)