import gradio as gr from transformers import pipeline # Load the image classification model from Hugging Face classifier = pipeline("image-classification", model="microsoft/resnet-50") def classify_image(image): # Perform image classification results = classifier(image) # Format the results return {result["label"]: f"{result['score']:.4f}" for result in results} # Create the Gradio interface demo = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=5), title="Image Classification with ResNet-50", description="Upload an image to classify it into one of 1000 ImageNet categories." ) # Launch the app if __name__ == "__main__": demo.launch()