import streamlit as st from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer from transformers import pipeline import torch import numpy as np def main(): st.title("yelp2024fall Test") st.write("Enter a sentence for analysis:") user_input = st.text_input("") if user_input: # Approach: AutoModel model2 = AutoModelForSequenceClassification.from_pretrained("huimanho/CustomModel_yelp", num_labels=5) sentiment_pipeline = pipeline(model="huimanho/CustomModel_yelp") tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") outputs = model2(**user_input) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) predictions = predictions.cpu().detach().numpy() # Get the index of the largest output value max_index = np.argmax(predictions) st.write(f"result (AutoModel) - Label: {max_index}") if __name__ == "__main__": main()