import gradio as gr from fastai.vision.all import * from huggingface_hub import from_pretrained_fastai repo_id = "kurianbenoy/paddy_convnext_model" learn = from_pretrained_fastai(repo_id) labels = learn.dls.vocab def predict(img): img = PILImage.create(img) _pred, _pred_w_idx, probs = learn.predict(img) # gradio doesn't support tensors, so converting to float labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)} return labels_probs interface_options = { "title": "Paddy Doctor", "description": "Paddy cultivation requires consistent supervision because several diseases and pests might affect the paddy crops, leading to up to 70% yield loss. This spaces is an online demo to showcase a model build for [real-world Kaggle competition](https://www.kaggle.com/competitions/paddy-disease-classification/overview) to identify diseases from images of paddy leaves.", "interpretation": "default", "layout": "horizontal", # Audio from validation file "examples": [ "100098.jpg", "100002.jpg", "100048.jpg" ], "allow_flagging": "never", } demo = gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(480, 480)), outputs=gr.outputs.Label(num_top_classes=3), **interface_options, ) launch_options = { "enable_queue": True, "share": False, } demo.launch(**launch_options)