import datetime import os import gradio as gr import langchain import pickle from langchain.llms import HuggingFaceHub from chain import get_new_chain1 api_token = os.environ["HF_TOKEN"] def get_faiss_store(): with open("docs.pkl", 'rb') as f: faiss_store = pickle.load(f) return faiss_store def load_model(): print(langchain.__file__) vectorstore = get_faiss_store() flan_ul = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature":0.1, "max_new_tokens":200}, huggingfacehub_api_token=api_token) qa_chain = get_new_chain1(vectorstore, flan_ul, flan_ul, isFlan=True) return qa_chain def chat(inp, history, agent): history = history or [] if agent is None: history.append((inp, "Please wait for model to load (3-5 seconds)")) return history, history print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") print("inp: " + inp) history = history or [] output = agent({"question": inp, "chat_history": history}) answer = output["answer"] history.append((inp, answer)) print(history) return history, history block = gr.Blocks(css=".gradio-container {background-color: lightgray}") with block: with gr.Row(): gr.Markdown("

🤗 Transformers Chat

Ask questions about the Hugging Face Transformers Library, Powered by Flan-UL2

") chatbot = gr.Chatbot() with gr.Row(): message = gr.Textbox( label="What's your question?", placeholder="What's the answer to life, the universe, and everything?", lines=1, ) submit = gr.Button(value="Send", variant="secondary").style(full_width=False) gr.Examples( examples=[ "How do I install transformers?", "How do I load pretrained instances with an AutoClass?", "How do I fine-tune a pretrained model?", ], inputs=message, ) gr.HTML( """ This simple application uses Langchain, an open-source LLM, and FAISS to do Q&A over the 🤗 Transformers Documentation.""" ) gr.HTML( "
Powered by Hugging Face 🤗 and LangChain 🦜️🔗
" ) state = gr.State() agent_state = gr.State() block.load(load_model, inputs=None, outputs=[agent_state]) submit.click(chat, inputs=[message, state, agent_state], outputs=[chatbot, state]) message.submit(chat, inputs=[message, state, agent_state], outputs=[chatbot, state]) block.launch(debug=True)