|
|
|
|
|
import streamlit as st |
|
|
|
import os |
|
|
|
import base64 |
|
import json |
|
import pandas as pd |
|
pd.options.mode.chained_assignment = None |
|
|
|
import numpy as np |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
class Visualization: |
|
def __init__( |
|
self, |
|
path_instructions, |
|
path_data, |
|
lang, |
|
num_docs, |
|
num_docs_for_words, |
|
max_len_text_display, |
|
): |
|
self.path_instructions = path_instructions |
|
self.path_data = path_data |
|
self.lang = lang |
|
self.num_docs = num_docs |
|
self.num_docs_for_words = num_docs_for_words |
|
self.max_len_text_display = max_len_text_display |
|
|
|
def preamble(self): |
|
st.markdown( |
|
"Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail." |
|
) |
|
|
|
def get_binary_file_downloader_html(bin_file, file_label="File"): |
|
with open(bin_file, "rb") as f: |
|
data = f.read() |
|
bin_str = base64.b64encode(data).decode() |
|
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>' |
|
return href |
|
|
|
st.markdown( |
|
get_binary_file_downloader_html( |
|
self.path_instructions, |
|
"Download the explanation of the filtering pipeline as pdf", |
|
), |
|
unsafe_allow_html=True, |
|
) |
|
|
|
def open_data(self): |
|
with open(self.path_data) as json_file: |
|
data = json.load(json_file) |
|
|
|
self.num_docs = min(self.num_docs, len(data)) |
|
self.num_docs_for_words = min(self.num_docs_for_words, len(data)) |
|
|
|
if "words" in data[0]: |
|
words = [doc["words"] for doc in data[: self.num_docs_for_words]] |
|
words = [word for doc in words for word in doc] |
|
self.words = pd.DataFrame(words) |
|
else: |
|
self.words = None |
|
|
|
docs = data[: self.num_docs] |
|
for doc in docs: |
|
if not (self.words is None): |
|
del doc["words"] |
|
if len(doc["text"]) > self.max_len_text_display: |
|
doc["text"] = ( |
|
doc["text"][: self.max_len_text_display] |
|
+ " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]" |
|
) |
|
self.docs_checkpoint = pd.DataFrame(docs) |
|
self.docs = self.docs_checkpoint |
|
|
|
def set_title(self): |
|
st.title(f"{self.num_docs} {self.lang} documents with their stats.") |
|
|
|
def filtering_of_docs(self): |
|
st.sidebar.subheader("Parameters of the filtering on documents") |
|
|
|
def set_sliders(): |
|
columns = list(self.docs) |
|
keys = [] |
|
conds = {} |
|
|
|
def get_cond(key, cutoff, max_cutoff): |
|
if max_cutoff: |
|
return self.docs[key] <= cutoff |
|
return self.docs[key] >= cutoff |
|
|
|
def print_discared_by_cond(cond): |
|
st.sidebar.caption( |
|
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter." |
|
) |
|
st.sidebar.caption("---------") |
|
|
|
if "number_words" in columns: |
|
cutoff_def = "If the number of words of a document is lower than this number, the document is removed." |
|
max_nb_words = int(np.max(self.docs["number_words"])) + 1 |
|
cutoff_min_number_words = st.sidebar.slider( |
|
cutoff_def, 0, min(max_nb_words, 500), 0 |
|
) |
|
new_key = ("number_words", cutoff_min_number_words, False) |
|
keys.append(new_key) |
|
cond_1 = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond_1) |
|
|
|
cutoff_def = "If the number of words of a document is higher than this number, the document is removed." |
|
cutoff_max_number_words = st.sidebar.slider( |
|
cutoff_def, 0, max_nb_words, max_nb_words |
|
) |
|
new_key = ("number_words", cutoff_max_number_words, True) |
|
keys.append(new_key) |
|
cond_2 = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond_2) |
|
|
|
conds["number_words"] = [cond_1, cond_2] |
|
|
|
if "repetitions_ratio" in columns: |
|
val_repetitions_lengths = list( |
|
self.docs["repetitions_ratio"].iloc[0].keys() |
|
) |
|
default_index = ( |
|
val_repetitions_lengths.index("10") |
|
if "10" in val_repetitions_lengths |
|
else 0 |
|
) |
|
label_selectbox = ( |
|
"Length of the repetitions (that will determine the repetitions ratio). " |
|
"Choosing a higher or lower number does not mean that the filtering " |
|
"is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) " |
|
"tends to associate a high repetitions ratio to very long documents (like book chapters), but with " |
|
"few or no repetitions, simply because their length gives them more diversity, and we do " |
|
"not want to discard such documents." |
|
) |
|
repetitions_length = st.sidebar.selectbox( |
|
label=label_selectbox, |
|
options=val_repetitions_lengths, |
|
index=default_index, |
|
) |
|
self.docs = self.docs_checkpoint |
|
for i in range(len(self.docs["repetitions_ratio"])): |
|
self.docs["repetitions_ratio"].iloc[i] = self.docs["repetitions_ratio"].iloc[i][repetitions_length] |
|
|
|
cutoff_def = "If the repetitions ratio of a document is higher than this number, the document is removed." |
|
cutoff_repetitions_ratio = st.sidebar.slider( |
|
cutoff_def, 0.0, 1.0, 1.0, step=0.01 |
|
) |
|
new_key = ( |
|
"repetitions_ratio", |
|
cutoff_repetitions_ratio, |
|
True, |
|
) |
|
keys.append(new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond) |
|
conds["repetitions_ratio"] = [cond] |
|
|
|
if "special_characters_ratio" in columns: |
|
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed." |
|
cutoff_special_characters_ratio = st.sidebar.slider( |
|
cutoff_def, 0.0, 1.0, 1.0, step=0.01 |
|
) |
|
new_key = ( |
|
"special_characters_ratio", |
|
cutoff_special_characters_ratio, |
|
True, |
|
) |
|
keys.append(new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond) |
|
conds["special_characters_ratio"] = [cond] |
|
|
|
if "stopwords_ratio" in columns: |
|
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed." |
|
cutoff_stopwords_ratio = st.sidebar.slider( |
|
cutoff_def, 0.0, 1.0, 0.0, step=0.01 |
|
) |
|
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False) |
|
keys.append(new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond) |
|
conds["stopwords_ratio"] = [cond] |
|
|
|
if "badwords_ratio" in columns: |
|
cutoff_def = "If the bad words ratio of a document is higher than this number, the document is removed." |
|
cutoff_badwords_ratio = st.sidebar.slider( |
|
cutoff_def, 0.0, 1.0, 1.0, step=0.01 |
|
) |
|
new_key = ("badwords_ratio", cutoff_badwords_ratio, True) |
|
keys.append(new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond) |
|
conds["badwords_ratio"] = [cond] |
|
|
|
if "lang_id_score" in columns: |
|
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed." |
|
cutoff_lang_id_score = st.sidebar.slider( |
|
cutoff_def, 0.0, 1.0, 0.0, step=0.01 |
|
) |
|
new_key = ("lang_id_score", cutoff_lang_id_score, False) |
|
keys.append(new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond) |
|
conds["lang_id_score"] = [cond] |
|
|
|
if "perplexity_score" in columns: |
|
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed." |
|
max_pp = int(np.max(self.docs["perplexity_score"])) + 1 |
|
cutoff_perplexity_score = st.sidebar.slider( |
|
cutoff_def, 0, max_pp, max_pp |
|
) |
|
new_key = ("perplexity_score", cutoff_perplexity_score, True) |
|
keys.append(new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond) |
|
conds["perplexity_score"] = [cond] |
|
|
|
return keys, conds |
|
|
|
self.keys, conds = set_sliders() |
|
|
|
all_conds = [subcond for cond in list(conds.values()) for subcond in cond] |
|
all_conds = np.all(all_conds, axis=0) |
|
|
|
st.header("Filtering on documents") |
|
|
|
def display_dataset(cond, description): |
|
displayed_docs = self.docs.loc[cond] |
|
st.subheader( |
|
f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)" |
|
) |
|
st.markdown( |
|
"Click on a column to sort by it, place the cursor on the text to display it." |
|
) |
|
st.dataframe(displayed_docs) |
|
|
|
display_dataset(np.invert(all_conds), "Discarded documents") |
|
|
|
|
|
display_discarded_documents_by_filter = st.checkbox( |
|
"Display discarded documents by filter" |
|
) |
|
|
|
if display_discarded_documents_by_filter: |
|
columns = list(self.docs) |
|
|
|
if "number_words" in columns: |
|
cond_filter = np.invert(np.all(conds["number_words"], axis=0)) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the number of words", |
|
) |
|
|
|
if "repetitions_ratio" in columns: |
|
cond_filter = np.invert(np.all(conds["repetitions_ratio"], axis=0)) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the repetitions ratio", |
|
) |
|
|
|
if "special_characters_ratio" in columns: |
|
cond_filter = np.invert( |
|
np.all(conds["special_characters_ratio"], axis=0) |
|
) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the special characters ratio", |
|
) |
|
|
|
if "stopwords_ratio" in columns: |
|
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0)) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the stop words ratio", |
|
) |
|
|
|
if "badwords_ratio" in columns: |
|
cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0)) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the bad words ratio", |
|
) |
|
|
|
if "lang_id_score" in columns: |
|
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0)) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the language identification confidence score", |
|
) |
|
|
|
if "perplexity_score" in columns: |
|
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0)) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the perplexity score", |
|
) |
|
|
|
display_dataset(all_conds, "Retained documents") |
|
|
|
def filtering_of_words(self): |
|
if not (self.words is None): |
|
st.sidebar.subheader("Parameter of the filtering on words") |
|
|
|
cutoff_def = "If the length of a word is higher than this number, the word is removed." |
|
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200) |
|
cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word) |
|
|
|
incorrect_substrings = st.sidebar.checkbox( |
|
"Remove words with incorrect substrings." |
|
) |
|
|
|
cond_words = self.words["len_word"] <= cutoff_word |
|
if incorrect_substrings: |
|
cond_words = cond_words & np.invert(self.words["incorrect_substring"]) |
|
|
|
st.header("Filtering on words") |
|
|
|
st.markdown( |
|
f"Since the number of words is way larger than the number of documents, " |
|
f"we consider in this section words for the first {self.num_docs_for_words} documents only." |
|
) |
|
|
|
discarded_words = self.words.loc[np.invert(cond_words)] |
|
st.subheader( |
|
f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)" |
|
) |
|
st.markdown( |
|
"Click on a column to sort by it, place the cursor on the text to display it." |
|
) |
|
st.dataframe(discarded_words) |
|
|
|
retained_words = self.words.loc[cond_words] |
|
st.subheader( |
|
f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)" |
|
) |
|
st.markdown( |
|
"Click on a column to sort by it, place the cursor on the text to display it." |
|
) |
|
st.dataframe(retained_words) |
|
|
|
def plot_distributions_filtering_parameters(self): |
|
st.header("Distributions of the filtering parameters") |
|
|
|
display_distributions = st.checkbox("Display distributions") |
|
|
|
if display_distributions: |
|
|
|
def plot_hist(dataframe, key, num_bins=50): |
|
st.subheader(" ".join(key.split("_"))) |
|
hist_values = dataframe[key].values |
|
max_range = np.max(hist_values) |
|
hist_values = np.histogram( |
|
hist_values, bins=num_bins, range=(0, max_range) |
|
)[0] |
|
st.bar_chart(hist_values) |
|
st.markdown(f"Each bin is of size: {max_range/num_bins}.") |
|
|
|
for key in list({el[0]: None for el in self.keys}): |
|
plot_hist(self.docs, key) |
|
|
|
if not (self.words is None): |
|
plot_hist(self.words, "len_word") |
|
|
|
def plot_zipf_law(self): |
|
if not (self.words is None): |
|
st.header("Zipf's Law") |
|
|
|
display_zipf_law = st.checkbox("Display Zipf's Law") |
|
|
|
if display_zipf_law: |
|
|
|
freq_words = {} |
|
for _, row in self.words.iterrows(): |
|
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1 |
|
freq_words = np.array(list(freq_words.values())) |
|
freq_words = -np.sort(-freq_words) |
|
|
|
fig, ax = plt.subplots() |
|
ax.loglog(freq_words) |
|
ax.set_title("Zipf's Law") |
|
ax.set_xlabel("$i$-th most frequent word") |
|
ax.set_ylabel("frequency in the documents") |
|
st.pyplot(fig) |
|
|
|
def download_data(self): |
|
st.header("Download data") |
|
|
|
with open(self.path_data) as json_file: |
|
btn = st.download_button( |
|
label="Download data as json", |
|
data=json_file, |
|
file_name="data.json", |
|
) |
|
|
|
def visualization(self): |
|
self.preamble() |
|
self.open_data() |
|
self.set_title() |
|
self.filtering_of_docs() |
|
self.filtering_of_words() |
|
self.plot_distributions_filtering_parameters() |
|
|
|
self.download_data() |
|
|
|
|
|
path_instructions = "./explanation_filtering_pipeline.pdf" |
|
path_data = "./en_examples_with_stats.json" |
|
lang = "English" |
|
num_docs = 5000 |
|
num_docs_for_words = 500 |
|
max_len_text_display = 10000 |
|
|
|
visualization = Visualization( |
|
path_instructions, |
|
path_data, |
|
lang, |
|
num_docs, |
|
num_docs_for_words, |
|
max_len_text_display, |
|
) |
|
visualization.visualization() |
|
|