import pandas as pd from typing import List, Dict, Optional import gradio as gr from datasets import load_dataset import numpy as np class AuthorLeaderboard: """ A class to manage and process author leaderboard data for display in a Gradio Dataframe component. """ # Class-level constants defining columns and their data types COLUMNS_ORDER: List[str] = [ 'Rank', 'Author', 'Total Artifacts', 'Avg Artifacts per Paper', 'Total Papers', 'Total Models', 'Total Datasets', 'Total Spaces', 'Upvotes', 'Comments', ] DATATYPES: Dict[str, str] = { 'Rank': 'str', 'Author': 'markdown', 'Total Artifacts': 'int', 'Avg Artifacts per Paper': 'float', 'Total Papers': 'int', 'Total Models': 'int', 'Total Datasets': 'int', 'Total Spaces': 'int', 'Upvotes': 'int', 'Comments': 'int', } EMOTICONS = { 1: '🥇', 2: '🥈', 3: '🥉' } def __init__(self): """ Initialize the AuthorLeaderboard class by loading and processing the dataset. """ self.df_raw: pd.DataFrame = self.get_df() self.df_prettified: pd.DataFrame = self.prettify(self.df_raw) @staticmethod def get_df() -> pd.DataFrame: """ Load and process the leaderboard dataset. Returns: pd.DataFrame: The processed DataFrame. """ # Load the dataset from the Hugging Face Hub dataset = load_dataset('IAMJB/paper-central-leaderboard', split='train') df = dataset.to_pandas() # Calculate total artifacts df['Total Artifacts'] = df['num_models'] + df['num_datasets'] + df['num_spaces'] # Calculate average artifacts per paper df['Avg Artifacts per Paper'] = df['Total Artifacts'] / df['num_papers'] df['Avg Artifacts per Paper'] = df['Avg Artifacts per Paper'].round(2) # Rename columns for clarity df.rename(columns={ 'name': 'Author', 'num_papers': 'Total Papers', 'num_models': 'Total Models', 'num_datasets': 'Total Datasets', 'num_spaces': 'Total Spaces', 'upvotes': 'Upvotes', 'num_comments': 'Comments', }, inplace=True) return df def prettify(self, df: pd.DataFrame) -> pd.DataFrame: """ Prettify the DataFrame by adding rankings, emoticons, and markdown links. Args: df (pd.DataFrame): The DataFrame to prettify. Returns: pd.DataFrame: The prettified DataFrame. """ df = df.copy() # Sort authors by Total Artifacts descending df.sort_values(by='Total Artifacts', ascending=False, inplace=True) # Reset index to get ranks df.reset_index(drop=True, inplace=True) df.index += 1 # Start ranks from 1 # Add Rank column df['Rank'] = df.index # Add emoticons for top 3 ranks df['Rank'] = df['Rank'].apply(lambda x: f"{self.EMOTICONS.get(x, '')} {x}" if x <= 3 else f"{x}") # Convert 'Author' to markdown with profile links if 'username' is available df['Author'] = df.apply(self._create_author_link, axis=1) # Select columns to display df = df[self.COLUMNS_ORDER] return df def _create_author_link(self, row: pd.Series) -> str: """ Create a markdown link for the author's profile. Args: row (pd.Series): A row from the DataFrame. Returns: str: The markdown link for the author. """ if pd.notna(row.get('username')) and row['username']: profile_url = f"https://huggingface.co/{row['username']}" return f"[{row['Author']}]({profile_url})" else: return row['Author'] def filter(self, author_search_input: Optional[str] = None) -> gr.update: """ Filter the DataFrame based on the author search input. Args: author_search_input (Optional[str]): The author name to search for. Returns: gr.Update: An update object for the Gradio Dataframe component. """ filtered_df: pd.DataFrame = self.df_prettified.copy() if author_search_input: search_string = author_search_input.lower() filtered_df = filtered_df[filtered_df['Author'].str.lower().str.contains(search_string)] # Get the corresponding data types for the columns datatypes: List[str] = [self.DATATYPES.get(col, 'str') for col in filtered_df.columns] return gr.update(value=filtered_df, datatype=datatypes)